Tailoring Surface Chemistry of CsPbI3 Perovskite Quantum Dots Using Multifunctional Ligand Enables Efficient and Stable Solar Cells

被引:1
|
作者
Wang, Rufeng [1 ,2 ,3 ]
Ni, Jian [1 ,2 ,3 ]
Guan, Jiayi [1 ,2 ,3 ]
Zhang, Shuai [1 ,2 ,3 ]
Yan, Miao [1 ,2 ,3 ]
Li, Sen [4 ,5 ]
Zhang, Yaofang [6 ]
Li, Juan [1 ,2 ,3 ]
Cai, Hongkun [1 ,2 ,3 ]
Zhang, Jianjun [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Elect Informat & Opt Engn, Tianjin 300350, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Efficient Utilizat Solar Energy, Tianjin 300350, Peoples R China
[3] Nankai Univ, Engn Res Ctr Thin Film Optoelect Technol, Minist Educ, Tianjin 300350, Peoples R China
[4] Guangdong Quanwei Technol Co Ltd, Shanghai 200050, Peoples R China
[5] Zhengzhou Univ Light Ind, Sch Elect & Informat, Zhengzhou 450001, Peoples R China
[6] Tiangong Univ, Sch Phys Sci & Technol, Tianjin 300387, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
perovskite quantum dot; CsPbI3; ligand exchange; solar cells; stability; LIGHT-EMITTING-DIODES; HALIDE PEROVSKITES; NANOCRYSTALS; SIZE;
D O I
10.1021/acssuschemeng.4c05956
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-inorganic CsPbI3 perovskite quantum dots (PQDs) have emerged as promising lighting absorptions for solar cells due to their extraordinary optoelectronic properties and good solution-processability. However, the insulated and dynamic binding characteristics of long-chain ligands on the CsPbI3 PQD surface still challenge their photovoltaic efficiency and stability. Herein, an effective solution-ligand-exchange strategy is developed to modify the surface chemistry of the CsPbI3 PQD utilizing 5-aminopyridine-3-carboxylic acid (5A-3C) during the purification process. Systematic analyses reveal that 5A-3C serves as the multifunctional short-chain ligand to exchange long-chain ligands and is strongly bonded to the CsPbI3 PQD surface, thus facilitating the electronic coupling between neighboring PQDs to promote carrier transport ability. Meanwhile, 5A-3C reduced vacancy defects of the PQD surface and suppressed carrier nonradiation recombination in solar cells. Accordingly, the CsPbI3 PQD solar cells with 5A-3C treatment exhibit a champion power conversion efficiency (PCE) of 15.03%, significantly higher than that of the control device (13.45%). The operation stability of unencapsulated devices has also been significantly improved. This work offers a deep understanding of PQD surface chemistry and provides a feasible avenue to realize high-performance PQD solar cells.
引用
收藏
页码:14514 / 14523
页数:10
相关论文
共 50 条
  • [1] Modified surface ligand management of CsPbI3 perovskite quantum dots enables efficient and stable electroluminescent solar cells
    Wang, Rufeng
    Ni, Jian
    Guan, Jiayi
    Yang, Zhiwei
    Li, Jun
    Zhang, Shuai
    Li, Sen
    Li, Tiantian
    Li, Juan
    Cai, Hongkun
    Zhang, Jianjun
    ORGANIC ELECTRONICS, 2024, 128
  • [2] Ligand Engineering of CsPbI3 Quantum Dots for Efficient Solar Cells
    Yuan, Jifeng
    Tian, Jianjun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (26): : 12520 - 12527
  • [3] Planar Perovskite Solar Cells Using Perovskite CsPbI3 Quantum Dots as Efficient Hole Transporting Layers
    Liang, Tsair-Chun
    Su, Hsin-Yu
    Chen, Sih-An
    Chen, Yen-Ju
    Chiang, Chung-Yu
    Chiang, Chih-Hsun
    Kao, Tzung-Ta
    Chen, Lung-Chien
    Lin, Chun-Cheng
    MATERIALS, 2022, 15 (24)
  • [4] Electroluminescent Solar Cells Based on CsPbI3 Perovskite Quantum Dots
    Wang, Yao
    Duan, Chenghao
    Zhang, Xuliang
    Sun, Jianguo
    Ling, Xufeng
    Shi, Junwei
    Hu, Long
    Zhou, Zizhen
    Wu, Xianxin
    Han, Wei
    Liu, Xinfeng
    Cazorla, Claudio
    Chu, Dewei
    Huang, Shujuan
    Wu, Tom
    Yuan, Jianyu
    Ma, Wanli
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (06)
  • [5] Buried interface engineering enables efficient and refurbished CsPbI3 perovskite quantum dot solar cells
    Li, Huifeng
    Huang, Hehe
    Li, Du
    Zhang, Xuliang
    Zhao, Chenyu
    Zhao, Xinyu
    Ma, Wanli
    Yuan, Jianyu
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (02) : 972 - 981
  • [6] Surface engineering based on ionic liquids for efficient and stable CsPbI3 perovskite solar cells
    Rui, Dong
    Fu, Jianfei
    Chen, Qiaoyun
    Cao, Ji
    Wu, Wenting
    Chen, Lei
    Zhang, Jing
    Zhang, Zelong
    Zhou, Yi
    Song, Bo
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (13) : 7847 - 7855
  • [7] Tailoring the molecular size of alkylamine modifiers for fabricating efficient and stable inverted CsPbI3 perovskite solar cells
    Liu, Zhongyu
    Wang, Hongwei
    Han, Haijun
    Jiang, Hong
    Liu, Ning
    Wang, Jianwei
    Zhang, Jing
    Cui, Tian
    Liu, Xiaohui
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (28) : 10604 - 10612
  • [8] Tuning the Surface-Passivating Ligand Anchoring Position Enables Phase Robustness in CsPbI3 Perovskite Quantum Dot Solar Cells
    Khan, Jahangeer
    Zhang, Xuliang
    Yuan, Jianyu
    Wang, Yao
    Shi, Guozheng
    Patterson, Robert
    Shi, Junwei
    Ling, Xufeng
    Hu, Long
    Wu, Tom
    Dai, Songyuan
    Ma, Wanli
    ACS ENERGY LETTERS, 2020, 5 (10): : 3322 - 3329
  • [9] 21.15%-Efficiency and Stable γ -CsPbI3 Perovskite Solar Cells Enabled by an Acyloin Ligand
    Wang, Jungang
    Che, Yuhang
    Duan, Yuwei
    Liu, Zhike
    Yang, Shaomin
    Xu, Dongfang
    Fang, Zhimin
    Lei, Xuruo
    Li, Yong
    Liu, Shengzhong
    ADVANCED MATERIALS, 2023, 35 (12)
  • [10] Passivation Effect of CsPbI3 Quantum Dots on the Performance and Stability of Perovskite Solar Cells
    Yang, Genjie
    Zhou, Dianli
    Li, Jiawen
    Yu, Junsheng
    PHOTONICS, 2022, 9 (01)