Spectral Dynamics for the Infinite Dihedral Group and the Lamplighter Group

被引:0
|
作者
Zu, Chao [1 ]
Yang, Yixin [1 ]
Lu, Yufeng [1 ]
机构
[1] Dalian Univ Technol, Dept Math Sci, Dalian 116024, Liaoning, Peoples R China
关键词
Projective spectrum; infinite dihedral group; lamplighter group; indeterminacy set; Fatou set; Julia set; SELF-SIMILAR GROUPS; PROJECTIVE SPECTRUM; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a tuple A = (A(0), A(1), ... , A(n)) of elements in a Banach algebra B, its projective (joint) spectrum p(A) is the collection of z is an element of P-n such that A(z) = z(0)A(0) + z(1)A(1) + <middle dot><middle dot> <middle dot>+ z(n)A(n) is not invertible. If B is the group C & lowast;-algebra for a discrete group G generated by A(0), A(1), ... , A(n) with a representation rho, then p (A) is an invariant of (weak) equivalence for rho. In [8], B. Goldberg and R. Yang proved that the Julia set J(F) of the induced rational map F for the infinite dihedral group D infinity is the union of the projective spectrum with the extended indeterminacy set. But the extended indeterminacy set EF is complicated. To obtain a better relationship between the projective spectrum and the Julia set, by replacing A(pi)(z) = z(0) + z(1 )pi(a) + z(2)pi(t) with the extended pencil A(pi) (z) = z(0) + z(1)pi(a) + z(2)pi(t) + z(3)pi(at), where rr is the Koopman representation, and using the method of operator recursions, we show that p(A pi) = J(F). Further, we study the spectral dynamics for the Lamplighter group L, and prove that J(Q) = EQ, where Q is the rational map associated with L.
引用
收藏
页码:883 / 910
页数:28
相关论文
共 50 条
  • [1] CONCEPTS OF THE DIHEDRAL INFINITE GROUP
    BERMAN, SD
    BUZASHI, K
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1981, 28 (1-2): : 173 - 187
  • [2] UNITS IN GROUP-RINGS OF THE INFINITE DIHEDRAL GROUP
    MIROWICZ, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1991, 34 (01): : 83 - 89
  • [3] Spectral theory for the dihedral group
    Helffer, B
    Hoffmann-Ostenhof, M
    Hoffmann-Ostenhof, T
    Nadirashvili, N
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (05) : 989 - 1017
  • [5] Hermitian Metric and the Infinite Dihedral Group
    Bryan Goldberg
    Rongwei Yang
    Proceedings of the Steklov Institute of Mathematics, 2019, 304 : 136 - 145
  • [6] Spectral theory for the dihedral group
    B. Helffer
    M. Hoffmann-Ostenhof
    T. Hoffmann-Ostenhof
    N. Nadirashvili
    Geometric & Functional Analysis GAFA, 2002, 12 : 989 - 1017
  • [7] Joint spectrum and the infinite dihedral group
    Rostislav Grigorchuk
    Rongwei Yang
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 145 - 178
  • [8] Hermitian Metric and the Infinite Dihedral Group
    Goldberg, Bryan
    Yang, Rongwei
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 304 (01) : 136 - 145
  • [9] Joint Spectrum and the Infinite Dihedral Group
    Grigorchuk, Rostislav
    Yang, Rongwei
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 (01) : 145 - 178
  • [10] Approximating the group algebra of the lamplighter by infinite matrix products
    Ara, Pere
    Claramunt, Joan
    FORUM MATHEMATICUM, 2022, 34 (04) : 851 - 891