Strigolactones: A promising tool for nutrient acquisition through arbuscular mycorrhizal fungi symbiosis and abiotic stress tolerance

被引:4
|
作者
Naseer, Muhammad Asad [1 ]
Zhang, Zhi Qin [1 ]
Mukhtar, Ahmed [2 ]
Asad, Muhammad Shoaib [2 ]
Wu, Hai Yan [1 ]
Yang, Hong [1 ]
Zhou, Xun Bo [1 ]
机构
[1] Guangxi Univ, Coll Agr, Guangxi Key Lab Agr Environm & Agr Prod Safety, Nanning 530004, Peoples R China
[2] Northwest A&F Univ, Coll Agron, Yangling 712100, Peoples R China
基金
中国博士后科学基金;
关键词
Strigolactones; Rhizosphere signaling; Arbuscular mycorrhizal fungi; Nutrient acquisition; SIGNALING MOLECULES; AUXIN TRANSPORT; GENE-EXPRESSION; ROOT-FORMATION; BUD OUTGROWTH; PLANT; GERMINATION; INHIBITION; ARABIDOPSIS; RESPONSES;
D O I
10.1016/j.plaphy.2024.109057
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Strigolactones (SLs) constitute essential phytohormones that control pathogen defense, resilience to phosphate deficiency and abiotic stresses. Furthermore, SLs are released into the soil by roots, especially in conditions in which there is inadequate phosphate or nitrogen available. SLs have the aptitude to stimulate the root parasite plants and symbiotic cooperation with arbuscular mycorrhizal (AM) fungi in rhizosphere. The use of mineral resources, especially phosphorus (P), by host plants is accelerated by AMF, which also improves plant growth and resilience to a series of biotic and abiotic stresses. Thus, these SL treatments that promote rhizobial symbiosis are substitutes for artificial fertilizers and other chemicals, supporting ecologically friendly farming practices. Moreover, SLs have become a fascinating target for abiotic stress adaptation in plants, with an array of uses in sustainable agriculture. In this review, the biological activity has been summarized that SLs as a signaling hormone for AMF symbiosis, nutrient acquisition, and abiotic stress tolerance through interaction with other hormones. Furthermore, the processes behind the alterations in the microbial population caused by SL are clarified, emphasizing the interplay with other signaling mechanisms. This review covers the latest developments in SL studies as well as the properties of SLs on microbial populations, plant hormone transductions, interactions and abiotic stress tolerance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi
    Liu, Ailin
    Ku, Yee-Shan
    Contador, Carolina A.
    Lam, Hon-Ming
    FRONTIERS IN GENETICS, 2020, 11
  • [2] Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis
    Lanfranco, Luisa
    Fiorilli, Valentina
    Venice, Francesco
    Bonfante, Paola
    JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (09) : 2175 - 2188
  • [3] The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress
    Doubkova, Pavla
    Suda, Jan
    Sudova, Radka
    SOIL BIOLOGY & BIOCHEMISTRY, 2012, 44 (01): : 56 - 64
  • [4] The role of arbuscular mycorrhizal symbiosis in plant abiotic stress
    Wang, Qian
    Liu, Mengmeng
    Wang, Zhifan
    Li, Junrong
    Liu, Ke
    Huang, Dong
    FRONTIERS IN MICROBIOLOGY, 2024, 14
  • [5] Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review
    Latef, Arafat Abdel Hamed Abdel
    Hashem, Abeer
    Rasool, Saiema
    Abd Allah, Elsayed Fathi
    Alqarawi, A. A.
    Egamberdieva, Dilfuza
    Jan, Sumira
    Anjum, Naser A.
    Ahmad, Parvaiz
    JOURNAL OF PLANT BIOLOGY, 2016, 59 (05) : 407 - 426
  • [6] Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review
    Arafat Abdel Hamed Abdel Latef
    Abeer Hashem
    Saiema Rasool
    Elsayed Fathi Abd_Allah
    A. A. Alqarawi
    Dilfuza Egamberdieva
    Sumira Jan
    Naser A. Anjum
    Parvaiz Ahmad
    Journal of Plant Biology, 2016, 59 : 407 - 426
  • [7] Enhancing Salt Tolerance in Poplar Seedlings through Arbuscular Mycorrhizal Fungi Symbiosis
    Han, Shuo
    Cheng, Yao
    Wu, Guanqi
    He, Xiangwei
    Zhao, Guozhu
    PLANTS-BASEL, 2024, 13 (02):
  • [8] Effects of Arbuscular Mycorrhizal Fungi and Rhizobia Symbiosis on the Tolerance of Medicago Sativa to Salt Stress
    Ben Laouane, R.
    Meddich, A.
    Bechtaoui, N.
    Oufdou, K.
    Wahbi, S.
    GESUNDE PFLANZEN, 2019, 71 (02): : 135 - 146
  • [9] Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance
    Begum, Naheeda
    Qin, Cheng
    Ahanger, Muhammad Abass
    Raza, Sajjad
    Khan, Muhammad Ishfaq
    Ashraf, Muhammad
    Ahmed, Nadeem
    Zhang, Lixin
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [10] Temperature - Stress tolerance of asparagus seedlings through symbiosis with arbuscular mycorrhizal fungus
    Matsubara, Y
    Kayukawa, Y
    Fukui, H
    JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE, 2000, 69 (05): : 570 - 575