Network pharmacology, molecular docking and experimental validation to elucidate the anti-T2DM mechanism of Lanxangia tsaoko

被引:3
|
作者
Wang, Zhen [1 ]
Li, Ruonan [1 ]
Chen, Xiaoli [1 ]
Ren, Huilin [1 ]
Wang, Caixia [1 ]
Min, Ruixue [1 ]
Zhang, Xiaofeng [1 ]
机构
[1] Zhengzhou Univ, Coll Publ Hlth, Dept Nutr & Food Hyg, 100 Kexue Ave, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lanxangia tsaoko; Type; 2; diabetes; Network pharmacology; UPLC-Q-Exactive Orbitrap/MS; Molecular docking;
D O I
10.1016/j.fitote.2024.106117
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Lanxangia tsaoko (L. L. tsaoko) ) is a natural medicine which could be used to treat type 2 diabetes mellitus (T2DM). However, there is no systematic and comprehensive research on the its active compounds and mechanism. This study aimed to investigate the active ingredients and potential mechanism of L. tsaoko for the treatment of T2DM. The chemical constituents of L. tsaoko were identified by UPLC-Q-Exactive Orbitrap/MS. The active compounds and mechanism of L. tsaoko were predicted by network pharmacology. Then the docking modes of key components and core targets were analyzed by molecular docking. Finally, animal experiments were conducted to verify the efficacy and targets of L. tsaoko in T2DM treatment. 70 compounds from L. tsaoko were identified. We obtained 37 active components, including quercetin, genistein and kaempferol, 5 core targets were AKT1, INS, TP53, TNF and IL-6. Mainly involved in PI3K/Akt, MAPK, RAGE/AGE, HIF-1, FoxO signaling pathways. Molecular docking results showed that the L. tsaoko had good binding potential to TNF. Therefore, we took the inflammatory mechanism as the prediction target for experimental verification. Animal experiments showed that L. tsaoko could alleviated colon injury of T2DM mice, improve glucose metabolism and decrease inflammatory levels. L. tsaoko exerted therapeutic effects on T2DM through multi-component, multi-target and multi-pathway regulation. Its action mechanisms were related to PI3K/Akt, MAPK, RAGE/AGE, HIF-1 and FoxO signaling pathways. This study provided new insights for the clinical treatment of T2DM.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Decoding the anti-hypertensive mechanism of α-mangostin based on network pharmacology, molecular docking and experimental validation
    Xue, Qi-Qi
    Liu, Chu-Hao
    Li, Yan
    MOLECULAR MEDICINE, 2024, 30 (01)
  • [2] Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia
    Bisht, Amisha
    Tewari, Disha
    Kumar, Sanjay
    Chandra, Subhash
    MOLECULAR DIVERSITY, 2024, 28 (03) : 1743 - 1763
  • [3] Mechanism of action of Huangbaichen Sanwei formulation in treating T2DM based on network pharmacology and molecular docking
    Li, Chunnan
    Shen, Jiaming
    Jing, Xiaolong
    Zhang, Kaiyue
    Liu, Lu
    Wang, Yuelong
    Zhang, Hui
    Sun, Jiaming
    MEDICINE, 2023, 102 (46) : E36146
  • [4] Network Pharmacology and Molecular Docking Elucidate the Pharmacological Mechanism of the OSTEOWONDER Capsule for Treating Osteoporosis
    Fan, Jiashuang
    Zhou, Jianli
    Qu, Zhuan
    Peng, Hangya
    Meng, Shuhui
    Peng, Yaping
    Liu, Tengyan
    Luo, Qiu
    Dai, Lifen
    FRONTIERS IN GENETICS, 2022, 13
  • [5] Network pharmacology and molecular docking to elucidate the mechanism of pulsatilla decoction in the treatment of colon cancer
    Liu, Huan
    Hu, Yuting
    Qi, Baoyu
    Yan, Chengqiu
    Wang, Lin
    Zhang, Yiwen
    Chen, Liang
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [6] Network Pharmacology and Molecular Docking to Elucidate the Potential Mechanism of Ligusticum Chuanxiong Against Osteoarthritis
    Xiang, Cheng
    Liao, Yilin
    Chen, Zhuoyuan
    Xiao, Bo
    Zhao, Ziyue
    Li, Aoyu
    Xia, Yu
    Wang, Pingxiao
    Li, Hui
    Xiao, Tao
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [7] Investigation of the mechanism of baicalein in the treatment of periodontitis based on network pharmacology, molecular docking and experimental validation
    Liu, Yue
    Cao, Fengdi
    Shi, Mingyue
    Deng, Zhuohang
    Guo, Kaili
    Fan, Tiantian
    Meng, Yuhan
    Bu, Mingyang
    Ma, Zhe
    BMC ORAL HEALTH, 2024, 24 (01):
  • [8] Mechanism of Lycium barbarum in treating periodontitis based on network pharmacology, molecular docking, and experimental validation
    Ma, Lin-Sha
    Jia, Xue-Ting
    Hu, Fa-Quan
    Zheng, Yu-Jiao
    Huang, Xiao-Feng
    Rausch-Fan, Xiaohui
    Fan, Xiao-Chuan
    CLINICAL ORAL INVESTIGATIONS, 2025, 29 (04)
  • [9] Mechanism of Curcumin in the Treatment of Intrauterine Adhesions Based on Network Pharmacology, Molecular docking, and Experimental Validation
    Li, Qiaoxia
    Zhang, Yongyan
    Shen, Haoyu
    Wang, Ziqian
    Huang, Jiezhuang
    Tang, Shuli
    Chen, Peiyue
    Zhi, Zhifu
    BIOCHEMICAL GENETICS, 2025,
  • [10] Integrating network pharmacology, molecular docking, and experimental validation to reveal the mechanism of Radix Rehmanniae in psoriasis
    Mo, Nian
    Zhou, Panyu
    Liu, Fanlu
    Su, Haojie
    Han, Ling
    Lu, Chuanjian
    MEDICINE, 2024, 103 (43)