Privacy-preserving decentralized learning methods for biomedical applications

被引:1
|
作者
Tajabadi, Mohammad [1 ,2 ]
Martin, Roman [1 ,2 ]
Heider, Dominik [1 ,2 ]
机构
[1] Heinrich Heine Univ Duesseldorf, Inst Comp Sci, Graf Adolf Str 63, D-40215 Dusseldorf, North Rhine Wes, Germany
[2] Heinrich Heine Univ Duesseldorf, Ctr Digital Med, Moorenstr 5, D-40215 Dusseldorf, North Rhine Wes, Germany
关键词
Federated learning; Split learning; Swarm learning; Gossip learning; Edge learning; ARTIFICIAL-INTELLIGENCE;
D O I
10.1016/j.csbj.2024.08.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, decentralized machine learning has emerged as a significant advancement in biomedical applications, offering robust solutions for data privacy, security, and collaboration across diverse healthcare environments. In this review, we examine various decentralized learning methodologies, including federated learning, split learning, swarm learning, gossip learning, edge learning, and some of their applications in the biomedical field. We delve into the underlying principles, network topologies, and communication strategies of each approach, highlighting their advantages and limitations. Ultimately, the selection of a suitable method should be based on specific needs, infrastructures, and computational capabilities.
引用
收藏
页码:3281 / 3287
页数:7
相关论文
共 50 条
  • [1] Privacy-Preserving and Reliable Decentralized Federated Learning
    Gao, Yuanyuan
    Zhang, Lei
    Wang, Lulu
    Choo, Kim-Kwang Raymond
    Zhang, Rui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2879 - 2891
  • [2] Achieving Consensus in Privacy-Preserving Decentralized Learning
    Xiang, Liyao
    Wang, Lingdong
    Wang, Shufan
    Li, Baochun
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2020, : 899 - 909
  • [3] Privacy-Preserving Decentralized Aggregation for Federated Learning
    Jeon, Beomyeol
    Ferdous, S. M.
    Rahmant, Muntasir Raihan
    Walid, Anwar
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [4] GAIN: Decentralized Privacy-Preserving Federated Learning
    Jiang, Changsong
    Xu, Chunxiang
    Cao, Chenchen
    Chen, Kefei
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78
  • [5] Privacy-preserving Decentralized Federated Deep Learning
    Zhu, Xudong
    Li, Hui
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 33 - 38
  • [6] Decentralized federated learning with privacy-preserving for recommendation systems
    Guo, Jianlan
    Zhao, Qinglin
    Li, Guangcheng
    Chen, Yuqiang
    Lao, Chengxue
    Feng, Li
    ENTERPRISE INFORMATION SYSTEMS, 2023, 17 (09)
  • [7] Privacy-preserving Decentralized Learning Framework for Healthcare System
    Kasyap, Harsh
    Tripathy, Somanath
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [8] Flexible and Privacy-preserving Framework for Decentralized Collaborative Learning
    Ma, Zhuoran
    Ma, Jianfeng
    Miao, Yinbin
    Liu, Ximeng
    Zheng, Wei
    Li, Xiang
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [9] Privacy-Preserving Personalized Decentralized Learning With Fast Convergence
    Qiao, Jing
    Xie, Zhenzhen
    Zheng, Zhigao
    Zhang, Xiao
    Zhang, Zhenyu
    Zhang, Qun
    Yu, Dongxiao
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 6618 - 6629
  • [10] DEVA: Decentralized, Verifiable Secure Aggregation for Privacy-Preserving Learning
    Tsaloli, Georgia
    Liang, Bei
    Brunetta, Carlo
    Banegas, Gustavo
    Mitrokotsa, Aikaterini
    INFORMATION SECURITY (ISC 2021), 2021, 13118 : 296 - 319