Multigranularity Feature Automatic Marking-Based Deep Learning for Anomaly Detection of Industrial Control Systems

被引:1
|
作者
Du, Xinyi [1 ,2 ,3 ]
Xu, Chi [2 ,3 ]
Li, Lin [2 ]
Li, Xinchun [1 ]
机构
[1] Liaoning Tech Univ, Sch Elect & Informat Engn, Huludao 125105, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Key Lab Networked Control Syst, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Protocols; Feature extraction; Anomaly detection; Deep learning; Industrial control; Convolutional neural networks; Security; convolutional neural network; deep learning; feature automatic marking; feature extraction; industrial control protocol (ICP);
D O I
10.1109/OJIM.2024.3418466
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Industrial control systems are facing ever-increasing security challenges due to the large-scale access of heterogeneous devices in the open Internet environment. Existing anomaly detection methods are mainly based on the priori knowledge of industrial control protocols (ICPs) whose protocol specifications, communication mechanism, and data format are already known. However, when these knowledge are blank, namely, unknown ICPs, existing methods become powerless to detect the anomaly data. To tackle this challenge, we propose a multigranularity feature automatic marking-based deep learning method to classify unknown ICPs for anomaly detection. First, to obtain the feature sequences without priori knowledge assisting, we propose a multigranularity feature extraction algorithm to extract both byte and half-byte information by fully utilizing the intensive key information in the header field of the application layer. Then, to label the feature sequences for deep learning, we propose a feature automatic marking algorithm that utilizes the inconsistency feature sequences to dynamically update the feature sequence set. With the labeled feature sequences, we employ deep learning with 1-D convolutional neural network and gated recurrent unit to classify the unknown ICPs and realize anomaly detection. Extensive experiments on two public datasets show that both the accuracy and precision of the proposed method reach above 98.4%, which is better than the three benchmark methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep Learning-Based Cyber-Physical Feature Fusion for Anomaly Detection in Industrial Control Systems
    Du, Yan
    Huang, Yuanyuan
    Wan, Guogen
    He, Peilin
    MATHEMATICS, 2022, 10 (22)
  • [2] A Deep Learning Approach for Anomaly Detection for Industrial Control Systems
    Giracca, Damian Martinez
    Pires, Fabio Lopez
    Baran, Benjamin
    Jara, Eustaquio Alcides Martinez
    2024 L LATIN AMERICAN COMPUTER CONFERENCE, CLEI 2024, 2024,
  • [3] DAICS: A Deep Learning Solution for Anomaly Detection in Industrial Control Systems
    Abdelaty, Maged
    Doriguzzi-Corin, Roberto
    Siracusa, Domenico
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (02) : 1117 - 1129
  • [4] Anomaly Detection of Industrial Control Systems Based on Transfer Learning
    Wang, Weiping
    Wang, Zhaorong
    Zhou, Zhanfan
    Deng, Haixia
    Zhao, Weiliang
    Wang, Chunyang
    Guo, Yongzhen
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (06) : 821 - 832
  • [5] Data anomaly detection with automatic feature selection and deep learning
    Jiang, Huachen
    Ge, Ensheng
    Wan, Chunfeng
    Li, Shu
    Quek, Ser Tong
    Yang, Kang
    Ding, Youliang
    Xue, Songtao
    STRUCTURES, 2023, 57
  • [6] Anomaly Detection of Industrial Control Systems Based on Transfer Learning
    Weiping Wang
    Zhaorong Wang
    Zhanfan Zhou
    Haixia Deng
    Weiliang Zhao
    Chunyang Wang
    Yongzhen Guo
    TsinghuaScienceandTechnology, 2021, 26 (06) : 821 - 832
  • [7] Deep Learning-based Multi-PLC Anomaly Detection in Industrial Control Systems
    Gawehn, Philip
    Ergenc, Doganalp
    Fischer, Mathias
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 4878 - 4884
  • [8] Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
    Tang, Shijie
    Ding, Yong
    Wang, Huiyong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (01): : 1129 - 1150
  • [9] Feature Selection for Machine Learning Based Anomaly Detection in Industrial Control System Networks
    Mantere, Matti
    Sailio, Mirko
    Noponen, Sami
    2012 IEEE INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND COMMUNICATIONS, CONFERENCE ON INTERNET OF THINGS, AND CONFERENCE ON CYBER, PHYSICAL AND SOCIAL COMPUTING (GREENCOM 2012), 2012, : 771 - 774
  • [10] Anomaly Detection on Industrial Electrical Systems using Deep Learning
    Carratu, Marco
    Gallo, Vincenzo
    Pietrosanto, Antonio
    Sommella, Paolo
    Patrizi, Gabriele
    Bartolini, Alessandro
    Ciani, Lorenzo
    Catelani, Marcantonio
    Grasso, Francesco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,