MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading

被引:0
|
作者
Cheng, Xi [1 ]
Zhang, Jinghao [1 ]
Zeng, Yunan [1 ]
Xue, Wenfang [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Algorithmic trading; Reinforcement learning; Optimal transport;
D O I
10.1007/978-981-97-2238-9_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Algorithmic trading refers to executing buy and sell orders for specific assets based on automatically identified trading opportunities. Strategies based on reinforcement learning (RL) have demonstrated remarkable capabilities in addressing algorithmic trading problems. However, the trading patterns differ among market conditions due to shifted distribution data. Ignoring multiple patterns in the data will undermine the performance of RL. In this paper, we propose MOT, which designs multiple actors with disentangled representation learning to model the different patterns of the market. Furthermore, we incorporate the Optimal Transport (OT) algorithm to allocate samples to the appropriate actor by introducing a regularization loss term. Additionally, we propose Pretrain Module to facilitate imitation learning by aligning the outputs of actors with expert strategy and better balance the exploration and exploitation of RL. Experimental results on real futures market data demonstrate that MOT exhibits excellent profit capabilities while balancing risks. Ablation studies validate the effectiveness of the components of MOT.
引用
收藏
页码:30 / 42
页数:13
相关论文
共 50 条
  • [1] Optimal Action Space Search: an Effective Deep Reinforcement Learning Method for Algorithmic Trading
    Duan, Zhongjie
    Chen, Cen
    Cheng, Dawei
    Liang, Yuqi
    Qian, Weining
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 406 - 415
  • [2] A new hybrid method of recurrent reinforcement learning and BiLSTM for algorithmic trading
    Huang, Yuling
    Song, Yunlin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (02) : 1939 - 1951
  • [3] An application of deep reinforcement learning to algorithmic trading
    Theate, Thibaut
    Ernst, Damien
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 173
  • [4] Using Reinforcement Learning in the Algorithmic Trading Problem
    E. S. Ponomarev
    I. V. Oseledets
    A. S. Cichocki
    Journal of Communications Technology and Electronics, 2019, 64 : 1450 - 1457
  • [5] Using Reinforcement Learning in the Algorithmic Trading Problem
    Ponomarev, E. S.
    Oseledets, I. V.
    Cichocki, A. S.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2019, 64 (12) : 1450 - 1457
  • [6] A Novel Algorithmic Trading Approach Based on Reinforcement Learning
    Li Xucheng
    Peng Zhihao
    2019 11TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2019), 2019, : 394 - 398
  • [7] Risk-averse Reinforcement Learning for Algorithmic Trading
    Shen, Yun
    Huang, Ruihong
    Yan, Chang
    Obermayer, Klaus
    2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING & ECONOMICS (CIFER), 2014, : 391 - 398
  • [8] Deep Robust Reinforcement Learning for Practical Algorithmic Trading
    Li, Yang
    Zheng, Wanshan
    Zheng, Zibin
    IEEE ACCESS, 2019, 7 : 108014 - 108022
  • [9] Sentiment and Knowledge Based Algorithmic Trading with Deep Reinforcement Learning
    Nan, Abhishek
    Perumal, Anandh
    Zaiane, Osmar R.
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT I, 2022, 13426 : 167 - 180
  • [10] Practical Algorithmic Trading Using State Representation Learning and Imitative Reinforcement Learning
    Park, Deog-Yeong
    Lee, Ki-Hoon
    IEEE ACCESS, 2021, 9 : 152310 - 152321