On the integrability of three two-component bi-Hamiltonian systems

被引:0
|
作者
Zang, Liming [1 ]
Zhang, Qian [2 ]
Liu, Q. P. [2 ]
机构
[1] Beijing Informat Sci & Technol Univ BISTU, Sch Appl Sci, Beijing 100192, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
bi-Hamiltonian systems; prolongation structure; Lax representation; energy-dependent Schr & ouml; dinger operator; PROLONGATION STRUCTURES; CONSERVATION-LAWS; DEFORMATIONS; CLASSIFICATION; EQUATIONS;
D O I
10.1088/1751-8121/ad65a1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The compatible trios of two-component homogeneous Hamiltonian operators were classified and some bi-Hamiltonian systems were constructed by Lorenzoni et al (2018 J. Phys. A: Math. Theor. 51 045202). In this paper, we study three two-component bi-Hamiltonian systems proposed by them. By means of the prolongation structure technique, we construct the missing Lax representations for those systems and confirm their integrability. Furthermore, we explore the possible connections between those systems and the known integrable systems.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On bi-Hamiltonian structure of two-component Novikov equation
    Li, Nianhua
    Liu, Q. P.
    PHYSICS LETTERS A, 2013, 377 (3-4) : 257 - 261
  • [2] Extended integrability and bi-Hamiltonian systems
    Bogoyavlenskij, OI
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (01) : 19 - 51
  • [3] Extended Integrability and Bi-Hamiltonian Systems
    Oleg I. Bogoyavlenskij
    Communications in Mathematical Physics, 1998, 196 : 19 - 51
  • [4] CANONICAL-FORMS AND INTEGRABILITY OF BI-HAMILTONIAN SYSTEMS
    OLVER, PJ
    PHYSICS LETTERS A, 1990, 148 (3-4) : 177 - 187
  • [5] On integrability of some bi-Hamiltonian two field systems of partial differential equations
    De Sole, Alberto
    Kac, Victor G.
    Turhan, Refik
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (05)
  • [6] A Synthetical Two-Component Model with Peakon Solutions: One More Bi-Hamiltonian Case
    Zhang Mengxia
    Yang Xiaomin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (05): : 425 - 430
  • [7] Hamiltonian integrability of two-component short pulse equations
    Brunelli, J. C.
    Sakovich, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
  • [8] Supersymmetric Bi-Hamiltonian Systems
    Sylvain Carpentier
    Uhi Rinn Suh
    Communications in Mathematical Physics, 2021, 382 : 317 - 350
  • [9] Quantum bi-Hamiltonian systems
    Cariñena, JF
    Grabowski, J
    Marmo, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30): : 4797 - 4810
  • [10] Singularities of Bi-Hamiltonian Systems
    Bolsinov, Alexey
    Izosimov, Anton
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) : 507 - 543