High power impulse magnetron sputtering of a zirconium target

被引:1
|
作者
Babu, Swetha Suresh [1 ]
Fischer, Joel [2 ]
Barynova, Kateryna [1 ]
Rudolph, Martin [3 ]
Lundin, Daniel [2 ]
Gudmundsson, Jon Tomas [1 ,4 ]
机构
[1] Univ Iceland, Sci Inst, Dunhaga 3, IS-107 Reykjavik, Iceland
[2] Linkoping Univ, Plasma & Coatings Phys Div, IFM Mat Phys, SE-58183 Linkoping, Sweden
[3] Leibniz Inst Surface Engn IOM, Permoserstr 15, D-04318 Leipzig, Germany
[4] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Space & Plasma Phys, SE-10044 Stockholm, Sweden
来源
关键词
PULSED MAGNETRON; HIPIMS DISCHARGES; DEPOSITION RATE; FLUX FRACTION; IONIZATION; PHASE; FILMS; FIELD; MICROSTRUCTURE; PROBABILITIES;
D O I
10.1116/6.0003647
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High power impulse magnetron sputtering (HiPIMS) discharges with a zirconium target are studied experimentally and by applying the ionization region model (IRM). The measured ionized flux fraction lies in the range between 25% and 59% and increases with increased peak discharge current density ranging from 0.5 to 2 A/cm(2) at a working gas pressure of 1 Pa. At the same time, the sputter rate-normalized deposition rate determined by the IRM decreases in accordance with the HiPIMS compromise. For a given discharge current and voltage waveform, using the measured ionized flux fraction to lock the model, the IRM provides the temporal variation of the various species and the average electron energy within the ionization region, as well as internal discharge parameters such as the ionization probability and the back-attraction probability of the sputtered species. The ionization probability is found to be in the range 73%-91%, and the back-attraction probability is in the range 67%-77%. Significant working gas rarefaction is observed in these discharges. The degree of working gas rarefaction is in the range 45%-85%, higher for low pressure and higher peak discharge current density. We find electron impact ionization to be the main contributor to working gas rarefaction, with over 80% contribution, while kick-out by zirconium atoms and argon atoms from the target has a smaller contribution. The dominating contribution of electron impact ionization to working gas rarefaction is very similar to other low sputter yield materials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Operating modes and target erosion in high power impulse magnetron sputtering
    Rudolph, M.
    Brenning, N.
    Hajihoseini, H.
    Raadu, M. A.
    Fischer, J.
    Gudmundsson, J. T.
    Lundin, D.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2022, 40 (04):
  • [2] Modeling of high power impulse magnetron sputtering discharges with graphite target
    Eliasson, H.
    Rudolph, M.
    Brenning, N.
    Hajihoseini, H.
    Zanaska, M.
    Adriaans, M. J.
    Raadu, M. A.
    Minea, T. M.
    Gudmundsson, J. T.
    Lundin, D.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (11):
  • [3] Modeling of high power impulse magnetron sputtering discharges with tungsten target
    Babu, Swetha Suresh
    Rudolph, Martin
    Lundin, Daniel
    Shimizu, Tetsuhide
    Fischer, Joel
    Raadu, Michael A.
    Brenning, Nils
    Gudmundsson, Jon Tomas
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (06):
  • [4] Target ion and neutral spread in high power impulse magnetron sputtering
    Hajihoseini, H.
    Brenning, N.
    Rudolph, M.
    Raadu, M. A.
    Lundin, D.
    Fischer, J.
    Minea, T. M.
    Gudmundsson, J. T.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (01):
  • [5] Species transport on the target during high power impulse magnetron sputtering
    Layes, V.
    Monje, S.
    Corbella, C.
    Trieschmann, J.
    de los Arcos, T.
    von Keudell, A.
    APPLIED PHYSICS LETTERS, 2017, 110 (08)
  • [6] Evolution of sputtering target surface composition in reactive high power impulse magnetron sputtering
    Kubart, T.
    Aijaz, A.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (17)
  • [7] Effect of the target power density on high-power impulse magnetron sputtering of copper
    Kozak, Tomas
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (02):
  • [8] Simulation of heating of the target during high-power impulse magnetron sputtering
    Karzin, V. V.
    Komlev, A. E.
    Karapets, K. I.
    Lebedev, N. K.
    SURFACE & COATINGS TECHNOLOGY, 2018, 334 : 269 - 273
  • [9] On reactive high power impulse magnetron sputtering
    Gudmundsson, J. T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (01)
  • [10] High power impulse magnetron sputtering discharge
    Gudmundsson, J. T.
    Brenning, N.
    Lundin, D.
    Helmersson, U.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (03):