Hybrid deep learning models with data fusion approach for electricity load forecasting

被引:0
|
作者
Ozen, Serkan [1 ]
Yazici, Adnan [2 ]
Atalay, Volkan [1 ]
机构
[1] Middle East Tech Univ, Comp Engn Dept, Ankara, Turkiye
[2] Nazarbayev Univ, Sch Engn & Digital Sci, Comp Sci Dept, Astana, Kazakhstan
关键词
data fusion; deep learning; hybrid models; load forecasting; NEURAL-NETWORKS;
D O I
10.1111/exsy.13741
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores the application of deep learning in forecasting electricity consumption. Initially, we assess the performance of standard neural networks, such as convolutional neural networks (CNN) and long short-term memory (LSTM), along with basic methods like ARIMA and random forest, on a univariate electricity consumption data set. Subsequently, we develop hybrid models for a comprehensive multivariate data set created by merging weather and electricity data. These hybrid models demonstrate superior performance compared to individual models on the univariate data set. Our main contribution is the introduction of a novel hybrid data fusion model. This model integrates a single-model approach for univariate data, a hybrid model for multivariate data, and a linear regression model that processes the outputs from both. Our hybrid fusion model achieved an RMSE value of 0.0871 on the Chicago data set, outperforming other models such as Random Forest (0.2351), ARIMA (0.2184), CNN (0.1802), LSTM + LSTM (0.1496), and CNN + LSTM (0.1587). Additionally, our model surpassed the performance of our base transformer model. Furthermore, combining the best-performing transformer model, with a Gaussian Process model resulted in further improvement in performance. The Transformer + Gaussian model achieved an RMSE of 0.0768, compared with 0.0781 for the single transformer model. Similar trends were observed in the Pittsburgh and IHEC data sets.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and Hybrid Deep-Learning Models
    Chen, Jiayu
    Liu, Lisang
    Guo, Kaiqi
    Liu, Shurui
    He, Dongwei
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [2] Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand
    Sekhar, Charan
    Dahiya, Ratna
    ENERGY, 2023, 268
  • [3] Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning
    Percuku, Arber
    Minkovska, Daniela
    Hinov, Nikolay
    TECHNOLOGIES, 2025, 13 (02)
  • [4] Short-term building electricity load forecasting with a hybrid deep learning method
    Chen, Wenhao
    Rong, Fei
    Lin, Chuan
    ENERGY AND BUILDINGS, 2025, 330
  • [5] Forecasting electricity load with optimized local learning models
    He, Wenwu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (10) : 603 - 608
  • [6] Deep Learning-Based Approach for Time Series Forecasting with Application to Electricity Load
    Torres, J. F.
    Fernandez, A. M.
    Troncoso, A.
    Martinez-Alvarez, F.
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 203 - 212
  • [7] A data decomposition and attention mechanism-based hybrid approach for electricity load forecasting
    Oqaibi, Hadi
    Bedi, Jatin
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 4103 - 4118
  • [8] Transfer Learning in Deep Learning Models for Building Load Forecasting: Case of Limited Data
    Nawar, Menna
    Shomer, Moustafa
    Faddel, Samy
    Gong, Huangjie
    SOUTHEASTCON 2023, 2023, : 532 - 538
  • [9] Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach
    Cho, Haeran
    Goude, Yannig
    Brossat, Xavier
    Yao, Qiwei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (501) : 7 - 21
  • [10] A Novel Load Forecasting Approach Based on Smart Meter Data Using Advance Preprocessing and Hybrid Deep Learning
    Unal, Fatih
    Almalaq, Abdulaziz
    Ekici, Sami
    APPLIED SCIENCES-BASEL, 2021, 11 (06):