Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM

被引:7
|
作者
Wan, Sicheng [1 ]
Yang, Haojing [1 ]
Lin, Jinwen [1 ]
Li, Junhui [1 ]
Wang, Yibo [1 ]
Chen, Xinman [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Engn Technol Res Ctr Low Carbon & Adv En, Sch Semicond Sci & Technol, Foshan 528225, Peoples R China
[2] Guangdong Jiuzhou Solar Energy Sci & Technol Co Lt, Zhongshan 528437, Peoples R China
关键词
State-of-charge estimation; Hierarchical optimization models; Lithium-ion battery; Deep learning; Battery management; OPEN-CIRCUIT VOLTAGE;
D O I
10.1016/j.energy.2024.133185
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate state-of-charge (SOC) estimation is a crucial part of the battery management system (BMS). However, conventional estimation methods are unable to capture the extremely complex dynamic characteristics of lithium-ion batteries. Besides, manually setting the optimal hyperparameters of models has many drawbacks. To address the problems, an (improved whale optimization algorithm) IWOA- (long short-term memory) LSTM model is proposed in this work. Utilizing the whale optimization algorithm (WOA) improved with four enhancement strategies (Gaussian chaotic mapping initialization, Nonlinear weight update, Le<acute accent>vy flight mechanism, and Elite opposition-based learning) to optimize the number of hidden layer nodes, the learning rate, and the number of iterations of LSTM model. It not only overcomes the shortcomings of artificially setting LSTM hyperparameters but also further boosts the learning ability of the IWOA-LSTM model, making the model more suitable for SOC estimation under different scenarios. The evaluation results show that the MAE of the proposed model for SOC estimation results is lower than 0.8 % under different temperatures and dynamic conditions. Compared with SOTA models, all MAE, RMSE, and MAPE of the proposed model substantially decline. Furthermore, the R-2 of the estimation results using the LG dataset in Experiment III is 98.65 %, suggesting the applicability of the proposed model to Li-ion batteries from various manufacturers. The experimental results demonstrate the proposed IWOA-LSTM model is suitable for accurate SOC estimation.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] State-of-charge estimation of lithium-ion batteries using LSTM and UKF
    Yang, Fangfang
    Zhang, Shaohui
    Li, Weihua
    Miao, Qiang
    ENERGY, 2020, 201 (201)
  • [2] An Online Estimation Algorithm of State-of-Charge of Lithium-ion Batteries
    Feng, Yong
    Meng, Cheng
    Han, Fengling
    Yi, Xun
    Yu, Xinghuo
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 3879 - 3882
  • [3] An improved adaptive estimator for state-of-charge estimation of lithium-ion batteries
    Zhang, Wenjie
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    JOURNAL OF POWER SOURCES, 2018, 402 : 422 - 433
  • [4] A State-of-Charge Estimation Method based on Bidirectional LSTM Networks for Lithium-ion Batteries
    Zhang, Zhen
    Xu, Ming
    Ma, Longhua
    Yu, Binchao
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 211 - 216
  • [5] A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM
    Ren, Xiaoqing
    Liu, Shulin
    Yu, Xiaodong
    Dong, Xia
    ENERGY, 2021, 234
  • [6] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Chung, Dae-Won
    Ko, Jae-Ha
    Yoon, Keun-Young
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) : 1931 - 1945
  • [7] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Dae-Won Chung
    Jae-Ha Ko
    Keun-Young Yoon
    Journal of Electrical Engineering & Technology, 2022, 17 : 1931 - 1945
  • [8] Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries
    Song, Xiangbao
    Yang, Fangfang
    Wang, Dong
    Tsui, Kwok-Leung
    IEEE ACCESS, 2019, 7 : 88894 - 88902
  • [9] Collaborative framework of Transformer and LSTM for enhanced state-of-charge estimation in lithium-ion batteries
    Bao, Gengyi
    Liu, Xinhua
    Zou, Bosong
    Yang, Kaiyi
    Zhao, Junwei
    Zhang, Lisheng
    Chen, Muyang
    Qiao, Yuanting
    Wang, Wentao
    Tan, Rui
    Wang, Xiangwen
    ENERGY, 2025, 322
  • [10] FPGA Implementation of the Mix Algorithm for State-of-Charge Estimation of Lithium-Ion Batteries
    Baronti, Federico
    Roncella, Roberto
    Saletti, Roberto
    Zamboni, Walter
    IECON 2014 - 40TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2014, : 5641 - 5646