HAT: Task Offloading and Resource Allocation in RIS-Assisted Collaborative Edge Computing

被引:1
|
作者
Tan, Lin [1 ]
Guo, Songtao [1 ]
Zhou, Pengzhan [1 ]
Kuang, Zhufang [2 ]
Jiao, Xianlong [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Key Lab Dependable Serv Comp Cyber Phys Soc, Minist Educ, Chongqing 400044, Peoples R China
[2] Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha 410004, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Array signal processing; Collaboration; Reconfigurable intelligent surfaces; Performance gain; Benchmark testing; Hybrid power systems; Resource management; Collaborative edge computing; deep reinforcement learning; reconfigurable intelligent surface; resource allocation; task offloading; INTELLIGENT REFLECTING SURFACE; MOBILITY;
D O I
10.1109/TNSE.2024.3432893
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The problem of joint offloading decisions, resource allocation, and Reconfigurable Intelligent Surface (RIS) beamforming matrices for RIS-Assisted Edge Computing is a challenging issue. In this paper, user tasks can be either executed locally, or offloaded to a collaborative device or edge server with the assistance of the RIS, where RIS elements are grouped and assigned to all users to enable parallel services. The objective is formulated as a mixed integer nonlinear programming (MINLP) problem, where collaborative offloading decisions, RIS beamforming matrices, transmission power allocation, and computation resource allocation are jointly optimized to minimize the energy consumption. To address this problem, we propose a discrete-continuous Hybrid Action adapted Twin Delayed Deep Deterministic policy gradient (TD3) algorithm based on Deep Reinforcement Learning, named HAT. HAT constructs a latent representation space for the original discrete-continuous hybrid actions, fully considering the relations among highly coupled hybrid optimization variables. Experimental results demonstrate that HAT achieves significant performance gains over existing work (e.g., MELO, DDPG, PADDPG) and other benchmark schemes.
引用
收藏
页码:4665 / 4678
页数:14
相关论文
共 50 条
  • [1] Task Offloading and Resource Allocation in an RIS-Assisted NOMA-Based Vehicular Edge Computing
    Yakubu, Abdul-Baaki
    Abd El-Malek, Ahmed H.
    Abo-Zahhad, Mohammed
    Muta, Osamu
    Elsabrouty, Maha M.
    IEEE ACCESS, 2024, 12 : 124330 - 124348
  • [2] Digital Twin Empowered Task Offloading for RIS-Assisted Edge Computing Networks
    Su Jian
    Qian Zhen
    Li Bin
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (07) : 2416 - 2424
  • [3] RIS-assisted Task Offloading for Wireless Dead Zone to Minimize Delay in Edge Computing
    Mukherjee, Mithun
    Kumar, Vikas
    Kumar, Suman
    Mavromoustakis, C. X.
    Zhang, Qi
    Guo, Mian
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2554 - 2559
  • [4] Task Offloading and Resource Allocation for Edge-Cloud Collaborative Computing
    Wang, Yaxing
    Hao, Jia
    Xu, Gang
    Huang, Baoqi
    Zhang, Feng
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT V, 2024, 14491 : 361 - 372
  • [5] Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing
    Zeng, Feng
    Chen, Qiao
    Meng, Lin
    Wu, Jinsong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3247 - 3257
  • [6] Computation Offloading for Edge Computing in RIS-Assisted Symbiotic Radio Systems
    Li B.
    Qian Z.
    Liu L.
    Wu Y.
    Lan D.
    Wu C.
    IEEE Transactions on Network Science and Engineering, 2023, 10 (06): : 4033 - 4045
  • [7] RIS-assisted device-edge collaborative edge computing for industrial applications
    Mian Guo
    Chengyuan Xu
    Mithun Mukherjee
    Peer-to-Peer Networking and Applications, 2023, 16 : 2023 - 2038
  • [8] RIS-assisted device-edge collaborative edge computing for industrial applications
    Guo, Mian
    Xu, Chengyuan
    Mukherjee, Mithun
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2023, 16 (05) : 2023 - 2038
  • [9] Collaborative Computation Offloading and Resource Allocation in Satellite Edge Computing
    Wang, Ruisong
    Zhu, Weichen
    Liu, Gongliang
    Ma, Ruofei
    Zhang, Di
    Mumtaz, Shahid
    Cherkaoui, Soumaya
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5625 - 5630
  • [10] Distributed Task Offloading and Resource Allocation in Vehicular Edge Computing
    Li, Shichao
    Chen, Hongbin
    Lin, Siyu
    Zhang, Ning
    2020 INTERNATIONAL CONFERENCE ON SPACE-AIR-GROUND COMPUTING (SAGC 2020), 2020, : 13 - 18