N=2a=1 supersymmetric KdV equation and its Darboux-Bäcklund transformations

被引:0
|
作者
Yang, XiaoXia [1 ]
Xue, Lingling [2 ]
Liu, Q. P. [3 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Ningbo Univ, Dept Appl Math, Ningbo 315211, Peoples R China
[3] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Backlund transformations; integrable systems; Darboux transformations; nonlinear superposition formula; supersymmetric integrable systems; PERIODIC-WAVE SOLUTIONS; BACKLUND-TRANSFORMATIONS; SOLITON-SOLUTIONS; EXTENSION;
D O I
10.1088/1572-9494/ad6a04
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the N = 2a = 1 supersymmetric KdV equation. We construct its Darboux transformation and the associated B & auml;cklund transformation. Furthermore, we derive a nonlinear superposition formula, and as applications we calculate some solutions for this supersymmetric KdV equation and recover the related results for the Kersten-Krasil'shchik coupled KdV-mKdV system.
引用
收藏
页数:8
相关论文
共 50 条