Multilevel Geometric Feature Embedding in Transformer Network for ALS Point Cloud Semantic Segmentation

被引:2
|
作者
Liang, Zhuanxin [1 ]
Lai, Xudong [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
self-attention mechanism; geometric feature embedding; fixed-radius dilated KNN search; multilevel loss aggregation; point cloud semantic segmentation; ATTENTIONAL NETWORK; CLASSIFICATION;
D O I
10.3390/rs16183386
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Effective semantic segmentation of Airborne Laser Scanning (ALS) point clouds is a crucial field of study and influences subsequent point cloud application tasks. Transformer networks have made significant progress in 2D/3D computer vision tasks, exhibiting superior performance. We propose a multilevel geometric feature embedding transformer network (MGFE-T), which aims to fully utilize the three-dimensional structural information carried by point clouds and enhance transformer performance in ALS point cloud semantic segmentation. In the encoding stage, compute the geometric features surrounding tee sampling points at each layer and embed them into the transformer workflow. To ensure that the receptive field of the self-attention mechanism and the geometric computation domain can maintain a consistent scale at each layer, we propose a fixed-radius dilated KNN (FR-DKNN) search method to address the limitation of traditional KNN search methods in considering domain radius. In the decoding stage, we aggregate prediction deviations at each level into a unified loss value, enabling multilevel supervision to improve the network's feature learning ability at different levels. The MGFE-T network can predict the class label of each point in an end-to-end manner. Experiments were conducted on three widely used benchmark datasets. The results indicate that the MGFE-T network achieves superior OA and mF1 scores on the LASDU and DFC2019 datasets and performs well on the ISPRS dataset with imbalanced classes.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multilevel Context Feature Fusion for Semantic Segmentation of ALS Point Cloud
    Zeng, Tao
    Luo, Fulin
    Guo, Tan
    Gong, Xiuwen
    Xue, Jingyun
    Li, Hanshan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [2] Bidirectional Feature Aggregation and Adaptive Fusion Network for ALS Point Cloud Semantic Segmentation
    Liu, Changhong
    Liu, Zhihui
    Wang, Xinyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [3] An Enhanced Downsampling Transformer Network for Point Cloud Semantic Segmentation
    Wang, Yang
    Wei, Zixuan
    Wan, Zhibo
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 262 - 269
  • [4] Multilevel feature context semantic fusion network for cloud and cloud shadow segmentation
    Zhang, Enwei
    Hu, Kai
    Xia, Min
    Weng, Liguo
    Lin, Haifeng
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [5] Multi-view Network with Transformer for Point Cloud Semantic Segmentation
    Hua, Zhongwei
    Du, Daming
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 161 - 165
  • [6] ALS Point Cloud Semantic Segmentation Based on Graph Convolution and Transformer With Elevation Attention
    Huang, Shuowen
    Hu, Qingwu
    Zhao, Pengcheng
    Li, Jiayuan
    Ai, Mingyao
    Wang, Shaohua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2877 - 2889
  • [7] MFFNet: multimodal feature fusion network for point cloud semantic segmentation
    Ren, Dayong
    Li, Jiawei
    Wu, Zhengyi
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    VISUAL COMPUTER, 2024, 40 (08): : 5155 - 5167
  • [8] Local Transformer Network on 3D Point Cloud Semantic Segmentation
    Wang, Zijun
    Wang, Yun
    An, Lifeng
    Liu, Jian
    Liu, Haiyang
    INFORMATION, 2022, 13 (04)
  • [9] A reversible transformer for LiDAR point cloud semantic segmentation
    Akwensi, Perpertual Hope
    Wang, Ruisheng
    2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 19 - 28
  • [10] Dual-Neighborhood Feature Aggregation Network for Point Cloud Semantic Segmentation
    Chen, Minghong
    Zhang, Guanghui
    Shi, Wenjun
    Zhu, Dongchen
    Zhang, Xiaolin
    Li, Jiamao
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 76 - 81