A new method for short-term photovoltaic power generation forecast based on ensemble model

被引:0
|
作者
Zhang, Yunxiu [1 ]
Li, Bingxian [1 ]
Han, Zhiyin [1 ]
机构
[1] Weifang Engn Vocat Coll, Qingzhou 262500, Peoples R China
关键词
NEURAL-NETWORK; OUTPUT; ALGORITHM;
D O I
10.1063/5.0226761
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photovoltaic (PV) power generation is influenced by various factors, including weather conditions, the quality of PV inverters, and the cleanliness of PV modules, with weather conditions having a particularly significant impact on power output. This paper proposes a novel method for PV power generation prediction based on an ensemble forecasting model, aimed at constructing an efficient and stable PV prediction model. Initially, Z-score is employed to filter outliers in the PV data, and Robust STL-bilinear temporal-spectral fusion is introduced for time series feature extraction. Subsequently, an ensemble forecasting model based on bidirectional long short-term memory and extreme gradient boosting is proposed to address the limitations of existing predictive models, which suffer from low robustness and an inability to provide stable forecasts. Furthermore, to mitigate the performance degradation of the prediction model due to manual tuning, a tactics enhanced white shark optimizer is proposed for parameter optimization of the ensemble model. The optimization performance is validated using the IEEE CEC2021 test functions. Finally, the proposed method is tested on PV power generation data from a site in Shandong, China. The results demonstrate that the proposed ensemble forecasting method achieves high accuracy and exhibits strong model stability. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Short-Term Photovoltaic Power Generation Forecast Method Based on LSTM
    Li, Yang
    Ye, Feng
    Liu, Zihao
    Wang, Zhijian
    Mao, Yupeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [2] Short-term ensemble forecast for purchased photovoltaic generation
    Takeda, Hisashi
    SOLAR ENERGY, 2017, 149 : 176 - 187
  • [3] Short-Term Photovoltaic Power Forecast Based on Long Short-Term Memory Network
    Shi, Min
    Xu, Ke
    Wang, Jue
    Yin, Rui
    Wang, Tieqiang
    Yong, Taiyou
    Hongyuan, Tianjin
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 2110 - 2116
  • [4] Short-term Forecast for Photovoltaic Power Generation and Development of Measuring Equipment
    Kobayashi, Hiroaki
    Arai, Junichi
    2014 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2014,
  • [5] Short-term power forecasting for photovoltaic generation based on psoesn model
    Wen R.
    Tan L.
    Li W.
    Li L.
    1600, E-Flow PDF Chinese Institute of Electrical Engineering (24): : 21 - 30
  • [6] A Short-Term Power Prediction Method for Photovoltaic Power Generation Based on GRU-Transformer Model
    Mao, Wangqing
    Zhao, Hangyu
    Huang, Xian
    Miao, Ji
    Wang, Xiuru
    Geng, Zhiyuan
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 1365 - 1370
  • [7] A short-term prediction model to forecast power of photovoltaic based on MFA-Elman
    Ma, XinYu
    Zhang, XiaoHong
    ENERGY REPORTS, 2022, 8 : 495 - 507
  • [8] Short-Term Photovoltaic Power Forecast Based on Grey Relational Analysis and GeoMAN Model
    Shi M.
    Xu K.
    Wang J.
    Yin R.
    Zhang P.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (11): : 2298 - 2305
  • [9] A Probabilistic Competitive Ensemble Method for Short-Term Photovoltaic Power Forecasting
    Bracale, Antonio
    Carpinelli, Guido
    De Falco, Pasquale
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2017, 8 (02) : 551 - 560
  • [10] Study on short-term photovoltaic power prediction model based on the Stacking ensemble learning
    Guo, Xifeng
    Gao, Ye
    Zheng, Di
    Ning, Yi
    Zhao, Qiannan
    ENERGY REPORTS, 2020, 6 (06) : 1424 - 1431