An Improved Diabatization Scheme for Computing the Electronic Circular Dichroism of Proteins

被引:0
|
作者
Rogers, David M. [1 ]
Do, Hainam [2 ,3 ,4 ]
Hirst, Jonathan D. [1 ]
机构
[1] Univ Nottingham, Sch Chem, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Nottingham Ningbo China, Dept Chem & Environm Engn, Ningbo 315100, Peoples R China
[3] Univ Nottingham Ningbo China, Key Lab Carbonaceous Waste Proc & Proc Intensifica, Ningbo 315100, Peoples R China
[4] Univ Nottingham Ningbo China, New Mat Inst, Ningbo 315042, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 30期
基金
中国国家自然科学基金;
关键词
CHARGE-TRANSFER TRANSITIONS; SECONDARY STRUCTURE; AB-INITIO; SPECTROSCOPY; PEPTIDES; SPECTRA; CD;
D O I
10.1021/acs.jpcb.4c02582
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We advance the quality of first-principles calculations of protein electronic circular dichroism (CD) through an amelioration of a key deficiency of a previous procedure that involved diabatization of electronic states on the amide chromophore (to obtain interamide couplings) in a beta-strand conformation of a diamide. This yields substantially improved calculated far-ultraviolet (far-UV) electronic circular dichroism (CD) spectra for beta-sheet conformations. The interamide couplings from the diabatization procedure for 13 secondary structural elements (13 diamide structures) are applied to compute the CD spectra for seven example proteins: myoglobin (alpha helix), jacalin (beta strand), concanavalin A (beta type I), elastase (beta type II), papain (alpha + beta), 3(10)-helix bundle (3(10)-helix) and snow flea antifreeze protein (polyproline). In all cases, except concanavalin A and papain, the CD spectra computed using the interamide couplings from the diabatization procedure yield improved agreement with experiment with respect to previous first-principles calculations.
引用
收藏
页码:7350 / 7361
页数:12
相关论文
共 50 条
  • [1] Electronic circular dichroism of proteins computed using a diabatisation scheme
    Rogers, David M.
    Do, Hainam
    Hirst, Jonathan D.
    MOLECULAR PHYSICS, 2023, 121 (7-8)
  • [2] Electronic Circular Dichroism Spectroscopy of Proteins
    Rogers, David M.
    Jasim, Sarah B.
    Dyer, Naomi T.
    Auvray, Francois
    Refregiers, Matthieu
    Hirst, Jonathan D.
    CHEM, 2019, 5 (11): : 2751 - 2774
  • [3] Computing the electronic circular dichroism spectrum of DNA quadruple helices of different topology: A critical test for a generalized excitonic model based on a fragment diabatization
    Asha, Haritha
    Green, James A.
    Esposito, Luciana
    Santoro, Fabrizio
    Improta, Roberto
    CHIRALITY, 2023, 35 (05) : 298 - 310
  • [4] Electronic Circular Dichroism of Fluorescent Proteins: A Computational Study
    Pikulska, Anna
    Steindal, Arnfinn Hykkerud
    Beerepoot, Maarten T. P.
    Pecul, Magdalena
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (08): : 3377 - 3386
  • [5] A New Method to Predict the Electronic Circular Dichroism Spectra of Proteins
    Nagy, Gabor
    Grubmueller, Helmut
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 290A - 290A
  • [6] Circular dichroism: electronic
    Warnke, Ingolf
    Furche, Filipp
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2012, 2 (01) : 150 - 166
  • [7] Conformational study of some milk proteins. Comparison of the results of electronic circular dichroism and vibrational circular dichroism
    Urbanova, M
    Keiderling, TA
    Pancoska, P
    BIOELECTROCHEMISTRY AND BIOENERGETICS, 1996, 41 (01): : 77 - 80
  • [8] Electronic circular dichroism of proteins from first-principles calculations
    Hirst, JD
    Colella, K
    Gilbert, ATB
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (42): : 11813 - 11819
  • [9] Electronic Circular Dichroism of Fullerenols
    Cornejo-Jacob, J.
    Vicente-Santiago, J.
    Guirado-Lopez, R. A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (13): : 7458 - 7466
  • [10] Circular dichroism experiments with proteins
    Schuh, MD
    Bondesen, BA
    FASEB JOURNAL, 1999, 13 (07): : A1508 - A1508