Distributed inference;
Random weighted bootstrap;
Quantile regression;
Communication efficient;
D O I:
10.1016/j.ins.2024.121172
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
The adoption of quantile regression has become increasingly prevalent because of its robustness and comprehensiveness compared to the ordinary least squares approach. However, in analyzing distributed data, it is challenging to estimate the unknown parameter and construct its confidence interval, while the existing related method suffers from coverage distortion at tail quantiles with levels close to 0 or 1, caused by the nuisance parameter estimation. This paper proposes a novel distributed statistical inference method for the quantile regression model by incorporating the random weighted bootstrap method to circumvent the nuisance parameter estimation problem. A modified random weighted bootstrap is also developed to suit the case when the number of machines is relatively small. The new methods are communication efficient and have reasonable finite sample performance at tail quantiles. Theoretical properties are established. Simulations and real data analysis are also devoted to verifying the theoretical properties and illustrating the finite sample performance.
机构:
Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USACornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
Zhang, Tao
Kato, Kengo
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USACornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
Kato, Kengo
Ruppert, David
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY USACornell Univ, Dept Stat & Data Sci, Ithaca, NY 14853 USA
机构:
Univ Toronto, Dept Stat Sci, 100 St George St, Toronto, ON M5S 3G3, CanadaUniv Toronto, Dept Stat Sci, 100 St George St, Toronto, ON M5S 3G3, Canada
Volgushev, Stanislav
Chao, Shih-Kang
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Stat, 250 N Univ St, W Lafayette, IN 47906 USAUniv Toronto, Dept Stat Sci, 100 St George St, Toronto, ON M5S 3G3, Canada
Chao, Shih-Kang
Cheng, Guang
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Stat, 250 N Univ St, W Lafayette, IN 47906 USAUniv Toronto, Dept Stat Sci, 100 St George St, Toronto, ON M5S 3G3, Canada
Cheng, Guang
ANNALS OF STATISTICS,
2019,
47
(03):
: 1634
-
1662
机构:
Penn State Univ, Dept Sociol & Criminol, University Pk, PA 16802 USA
Penn State Univ, Dept Anthropol, University Pk, PA 16802 USATamkang Univ, Dept Stat, Taipei, Taiwan
机构:
Univ Iowa, Dept Econ, Iowa City, IA 52242 USAUniv Iowa, Dept Econ, Iowa City, IA 52242 USA
Galvao, Antonio F.
Montes-Rojas, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
CONICET Univ San Andres, Vito Dumas 284,B1644BID, Victoria, Buenos Aires, Argentina
City Univ London, Dept Econ, London EC1V 0HB, EnglandUniv Iowa, Dept Econ, Iowa City, IA 52242 USA
机构:
Univ Minnesota, Sch Stat, 224 Church St South East, Minneapolis, MN 55455 USAUniv Minnesota, Sch Stat, 224 Church St South East, Minneapolis, MN 55455 USA
Wang, Lan
Van Keilegom, Ingrid
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Res Ctr Operat Res & Business Stat, Naamsestr 69, B-3000 Louvain, BelgiumUniv Minnesota, Sch Stat, 224 Church St South East, Minneapolis, MN 55455 USA
Van Keilegom, Ingrid
Maidman, Adam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Stat, 224 Church St South East, Minneapolis, MN 55455 USAUniv Minnesota, Sch Stat, 224 Church St South East, Minneapolis, MN 55455 USA