Magnetic properties and magnetocaloric effect of diamond-shaped graphene bilayer quantum dots doped with magnetic impurities: A Monte Carlo study

被引:2
|
作者
Elmghabar, Z. [1 ,2 ]
Elidrysy, A. [3 ]
Harir, S. [3 ,4 ]
Drissi, L. B. [1 ,2 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, LPHE, Modeling & Simulat, Rabat, Morocco
[2] Mohammed V Univ Rabat, Fac Sci, Ctr Phys Math CPM, Rabat, Morocco
[3] Hassan II Univ, Higher Normal Sch, Lab Biogeosci & Mat Engn, Casablanca, Morocco
[4] Reg Ctr Profess Educ & Training, Dept Phys & Chem, Casablanca Settat, Morocco
关键词
Graphene; Monte Carlo simulations; Quantum dots; Magnetic properties; Magnetocaloric effect; Critical temperature; Hysteresis loops; LONG-RANGE INTERACTION; BEHAVIOR; MODEL; FILMS;
D O I
10.1016/j.jmmm.2024.172443
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an analysis of diamond-shaped graphene bilayer quantum dots doped with magnetic impurities, this study delves into the magnetic properties of the system, employing Monte Carlo simulation. Our numerical results unveil the effect of the magnetic atom concentration x on the magnetizations and susceptibilities of the system, as well as the emergence of various phase diagrams characterized by distinct exchange couplings and anisotropy. We also examine the influence of doping concentration, temperature, and exchange couplings on hysteresis cycles. The magnetocaloric effect of the system is studied in detail. Remarkably, we discovered that strong exchange coupling and an external magnetic field can enhance the magnetocaloric effect of the system, and the relative cooling power can be improved as exchange couplings decrease or the applied magnetic field increases. Our results point to a promising prospect: the incorporation of magnetic ions into graphene bilayer quantum dots (GQDs) offers the potential to finely tune their performance. This intrinsic adaptability not only enhances their current capabilities, but also significantly expands the range of potential applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study
    Masrour, R.
    Jabar, A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 497 : 211 - 217
  • [2] The magnetic behaviors and magnetocaloric effect of a nano-graphene bilayer: A Monte Carlo study
    Sun, Lei
    Wang, Wei
    Liu, Cong
    Xu, Bing-hui
    Lv, Dan
    Gao, Zhong-yue
    SUPERLATTICES AND MICROSTRUCTURES, 2021, 149
  • [3] Magnetic properties of bilayer graphene: a Monte Carlo study
    Masrour, R.
    Jabar, A.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2017, 16 (01) : 12 - 17
  • [4] Magnetic properties of bilayer graphene: a Monte Carlo study
    R. Masrour
    A. Jabar
    Journal of Computational Electronics, 2017, 16 : 12 - 17
  • [5] Insights into the optoelectronic behaviour of heteroatom doped diamond-shaped graphene quantum dots
    El Haddad, Yassine
    Ouarrad, Hala
    Drissi, Lalla Btissam
    RSC ADVANCES, 2024, 14 (18) : 12639 - 12649
  • [6] QUANTUM MONTE CARLO STUDY OF MAGNETIC CORRELATION IN GRAPHENE NANORIBBONS AND QUANTUM DOTS
    Gao, Pan
    Liu, Suhang
    Tian, Lin
    Ma, Tianxing
    MODERN PHYSICS LETTERS B, 2013, 27 (21):
  • [7] Magnetic properties of bilayer graphene armchair nanoribbons: A Monte Carlo study
    Masrour, R.
    Jabar, A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 426 : 225 - 229
  • [8] Quantum Monte Carlo study of magnetic and superconducting properties of graphene
    Lin, Hai-Qing
    Ma, Tianxing
    Huang, Zhongbing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) : 4487 - 4494
  • [9] Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study
    Das, Ritwika
    Dhar, Namrata
    Bandyopadhyay, Arka
    Jana, Debnarayan
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2016, 99 : 34 - 42
  • [10] Magnetic properties and magnetocaloric effect of Borophyne structure: A Monte Carlo study
    Sahdane, T.
    Masrour, R.
    POLYHEDRON, 2024, 254