Artificial intelligence-assisted quantitative CT parameters in predicting the degree of risk of solitary pulmonary nodules

被引:0
|
作者
Jiang, Long [1 ]
Zhou, Yang [2 ]
Miao, Wang [3 ]
Zhu, Hongda [1 ]
Zou, Ningyuan [1 ]
Tian, Yu [1 ]
Pan, Hanbo [1 ]
Jin, Weiqiu [1 ]
Huang, Jia [1 ]
Luo, Qingquan [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Chest Hosp, Sch Med, Shanghai Lung Canc Ctr, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Chest Hosp, Dept Purchasing Ctr, Sch Med, Shanghai, Peoples R China
[3] Third Peoples Hosp Zhengzhou, Dept Oncol, Zhengzhou, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Artificial intelligence; prediction; lung cancer; INVASIVENESS;
D O I
10.1080/07853890.2024.2405075
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionArtificial intelligence (AI) shows promise for evaluating solitary pulmonary nodules (SPNs) on computed tomography (CT). Accurately determining cancer invasiveness can guide treatment. We aimed to investigate quantitative CT parameters for invasiveness prediction.MethodsPatients with stage 0-IB NSCLC after surgical resection were retrospectively analysed. Preoperative CTs were evaluated with specialized software for nodule segmentation and CT quantification. Pathology was the reference for invasiveness. Univariate and multivariate logistic regression assessed predictors of high-risk SPN.ResultsThree hundred and fifty-five SPN were included. On multivariate analysis, CT value mean and nodule type (ground glass opacity vs. solid) were independent predictors of high-risk SPN. The area under the curve (AUC) was 0.811 for identifying high-risk nodules.ConclusionsQuantitative CT measures and nodule type correlated with invasiveness. Software-based CT assessment shows potential for noninvasive prediction to guide extent of resection. Further prospective validation is needed, including comparison with benign nodules.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Artificial Intelligence-Assisted Quantitative CT parameters in Predicting the Degree of Risk of Solitary Pulmonary Nodules
    Jiang, L.
    Jiang, S.
    Huang, J.
    Luo, Q.
    JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (11) : S219 - S220
  • [2] Quantitative CT parameters in predicting the degree of risk of solitary pulmonary nodules
    Jiang, L.
    Jiang, S.
    Luo, Q.
    JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (04) : S92 - S92
  • [3] Artificial intelligence-assisted CT characterizations and quantitative analysis for differentiating pre-invasive lesions from invasive adenocarcinomas in pulmonary subsolid nodules ≤ 2cm.
    Zhang, Bingyu
    Yu, Fenglei
    Peng, Muyun
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [4] Artificial Intelligence-assisted Versus Clinician Only Evaluation of Indeterminate Pulmonary Nodules: A Comparative Effectiveness Study
    Godfrey, C. M.
    Leech, A.
    Zhu, J.
    Marmor, H. N.
    Pena, S.
    Maldonado, F.
    Deppen, S. A.
    Grogan, E. L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [5] Artificial intelligence solution to classify pulmonary nodules on CT
    Blanc, D.
    Racine, V.
    Khalil, A.
    Deloche, M.
    Broyelle, J. -A.
    Hammouamri, I.
    Sinitambirivoutin, E.
    Fiammante, M.
    Verdier, E.
    Besson, T.
    Sadate, A.
    Lederlin, M.
    Laurent, F.
    Chassagnon, G.
    Ferretti, G.
    Diascorn, Y.
    Brillet, P. -Y.
    Cassagnes, Lucie
    Caramella, C.
    Loubet, A.
    Abassebay, N.
    Cuingnet, P.
    Ohana, M.
    Behr, J.
    Ginzac, A.
    Veyssieres, H.
    Durando, X.
    Bousaid, I.
    Lassaux, N.
    Brehant, J.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (12) : 803 - 810
  • [6] Artificial intelligence-assisted quantitative CT analysis of airway changes following SABR for central lung tumors
    Tekatli, Hilal
    Bohoudi, Omar
    Hardcastle, Nicholas
    Palacios, Miguel A.
    Schneiders, Famke L.
    Bruynzeel, Anna M. E.
    Siva, Shankar
    Senan, Suresh
    RADIOTHERAPY AND ONCOLOGY, 2024, 198
  • [7] Artificial Intelligence-Assisted Quantitative CT Analysis of Airway Changes Following SABR for Central Lung Tumors
    Tekatli, H.
    Bohoudi, O.
    Hardcastle, N.
    Palacios, M. A.
    Schneiders, F. L.
    Bruynzeel, A.
    Siva, S.
    Senan, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : S141 - S142
  • [8] FACTORS INFLUENCING QUANTITATIVE CT MEASUREMENTS OF SOLITARY PULMONARY NODULES
    ZERHOUNI, EA
    SPIVEY, JF
    MORGAN, RH
    LEO, FP
    STITIK, FP
    SIEGELMAN, SS
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1982, 6 (06) : 1075 - 1087
  • [9] Artificial intelligence-assisted machine learning models for predicting lung cancer survival
    Yuan, Yue
    Zhang, Guolong
    Gu, Yuqi
    Hao, Sicheng
    Huang, Chen
    Xie, Hongxia
    Mi, Wei
    Zeng, Yingchun
    ASIA-PACIFIC JOURNAL OF ONCOLOGY NURSING, 2025, 12
  • [10] Artificial intelligence-assisted psychosis risk screening in adolescents: Practices and challenges
    Cao, Xiao-Jie
    Liu, Xin-Qiao
    WORLD JOURNAL OF PSYCHIATRY, 2022, 12 (10): : 1287 - 1297