Assessing N2O Emissions from Tropical Crop Cultivation in Mineral and Peatland Soils: A Review

被引:0
|
作者
Suwardi [1 ,3 ]
Darmawan [1 ]
Djajakirana, Gunawan [1 ,3 ]
Sumawinata, Basuki [1 ]
Al Viandari, Nourma [2 ]
机构
[1] IPB Univ, Fac Agr, Dept Soil Sci & Land Resources, Bogor, Indonesia
[2] Natl Res & Innovat Agcy BRIN, Res Org Agr & Food, Res Ctr Food Crops, Bogor, Indonesia
[3] IPB Univ, Inst Res & Community Serv, Ctr Mine Reclamat Studies, Bogor, Indonesia
来源
关键词
agricultural land; closed chamber method; N2O 2 O gas emission; peatland soil; tropical mineral soil; NITROUS-OXIDE EMISSIONS; CARBON-DIOXIDE; REDUCED TILLAGE; NITRIFICATION; MANAGEMENT; REDUCTION; FLUXES; CORN; DENITRIFICATION; SYSTEMS;
D O I
10.20961/carakatani.v38i2.75235
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Nitrous oxide (N2O) 2 O) emissions from agricultural activities contribute significantly to global warming. Understanding the factors influencing N2O 2 O emissions is crucial for developing effective mitigation strategies. This review assesses N2O 2 O emissions from various crops cultivated in tropical mineral and peatland soils, providing insights into the impact of land use, fertilization practices and rainfall on N2O 2 O fluxes. Field measurements of N2O 2 O fluxes were conducted in agricultural fields growing corn, peanuts, and cassava in Bogor Regency, West Java Province, as well as in peatland areas with Acacia plantations and natural primary forests in Bengkalis Regency, Riau Province. The study assesses the total N2O 2 O fluxes for each crop and land type, revealing significant variations in N2O 2 O emissions among different crops and land uses. Peatland areas exhibit higher emissions compared to mineral soils, emphasizing the need for targeted mitigation measures in these ecosystems. The findings highlight the importance of considering the type and age of land use when evaluating N2O 2 O emissions. Land management practices, such as fertilizer use and soil disturbance, emerge as critical factors affecting N2O 2 O emissions. Improper fertilizer application and excessive soil disturbance can lead to increased N2O 2 O emissions, underscoring the necessity for careful N fertilizer management and conservation tillage techniques.
引用
收藏
页码:308 / 326
页数:19
相关论文
共 50 条
  • [1] Assessing and mitigating N2O emissions from agricultural soils
    Mosier, AR
    Duxbury, JM
    Freney, JR
    Heinemeyer, O
    Minami, K
    CLIMATIC CHANGE, 1998, 40 (01) : 7 - 38
  • [2] Assessing and Mitigating N2O Emissions from Agricultural Soils
    A.R. Mosier
    J.M. Duxbury
    J.R. Freney
    O. Heinemeyer
    K. Minami
    Climatic Change, 1998, 40 : 7 - 38
  • [3] Biochar from crop residues mitigates N2O emissions and increases carbon content in tropical soils
    Gabetto, Fernanda Palmeira
    Tenelli, Sarah
    Netto-Ferreira, Julia Barra
    Martins Junior, Joaquim
    Almeida, Octavio Augusto Costa
    Cosenza, Marcela Lamas
    Strauss, Mathias
    Carvalho, Joao Luis Nunes
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2025,
  • [4] Isotopic variability of N2O emissions from tropical forest soils
    Pérez, T
    Trumbore, SE
    Tyler, SC
    Davidson, EA
    Keller, M
    de Camargo, PB
    GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (02) : 525 - 535
  • [5] EMISSIONS OF NO AND N2O FROM SOILS
    SKIBA, U
    FOWLER, D
    SMITH, K
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 1994, 31 (1-2) : 153 - 158
  • [6] The influence of mineral fertilization and legumes cultivation on the N2O soil emissions
    Sosulski, T.
    Szara, E.
    Stepien, W.
    Rutkowska, B.
    PLANT SOIL AND ENVIRONMENT, 2015, 61 (12) : 529 - 536
  • [7] Contribution of white grubs (Scarabaeidae: Coleoptera) to N2O emissions from tropical soils
    Majeed, Muhammad Zeeshan
    Miambi, Edouard
    Barois, Isabelle
    Randriamanantsoa, Richard
    Blanchart, Eric
    Brauman, Alain
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 75 : 37 - 44
  • [8] Drainage increases CO2and N2O emissions from tropical peat soils
    Prananto, Jeremy Aditya
    Minasny, Budiman
    Comeau, Louis-Pierre
    Rudiyanto, Rudiyanto
    Grace, Peter
    GLOBAL CHANGE BIOLOGY, 2020, 26 (08) : 4583 - 4600
  • [9] GREENHOUSE GAS (CO2 AND N2O) EMISSIONS FROM SOILS: A REVIEW
    Munoz, Cristina
    Paulino, Leandro
    Monreal, Carlos
    Zagal, Erick
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2010, 70 (03): : 485 - 497
  • [10] Losses of NO and N2O emissions from Venezuelan and other worldwide tropical N-fertilized soils
    Marquina, Sorena
    Donoso, Loreto
    Perez, Tibisay
    Gil, Jenie
    Sanhueza, Eugenio
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2013, 118 (03) : 1094 - 1104