Metal-organic framework-derived single-atom catalysts for electrocatalytic energy conversion applications

被引:4
|
作者
Cui, Mingjin [1 ,2 ]
Xu, Bo [2 ]
Shi, Xinwei [3 ]
Zhai, Qingxi [3 ]
Dou, Yuhai [1 ]
Li, Guisheng [4 ]
Bai, Zhongchao [1 ]
Ding, Yu [3 ]
Sun, Wenping [5 ]
Liu, Huakun [1 ,6 ]
Dou, Shixue [1 ,6 ]
机构
[1] Univ Shanghai Sci & Technol, Inst Energy Mat Sci IEMS, Shanghai 200093, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, State Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Ctr Energy Storage Mat & Technol, Jiangsu Key Lab Artificial Funct Mat, Natl Lab Solid State Microstruct,Coll Engn & Appl, Nanjing, Peoples R China
[4] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[5] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[6] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Squires Way,Innovat Campus, North Wollongong, NSW 2500, Australia
基金
国家重点研发计划;
关键词
ATOMICALLY DISPERSED FE; OXYGEN REDUCTION; ACTIVE-SITES; EFFICIENT ELECTROREDUCTION; RECENT PROGRESS; POROUS CARBONS; DOPED CARBON; DESIGN; EXCHANGE; MOF;
D O I
10.1039/d4ta03518f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are revolutionizing electrocatalytic energy conversion. This review explores their synthesis, characterization, and application, emphasizing their role in advancing sustainable energy technologies. SACs offer unprecedented efficiency and selectivity by dispersing individual metal atoms on a support material. This maximizes active site utilization and minimizes material usage compared to traditional catalysts. Various synthesis strategies, such as bimetallic MOF pyrolysis and ligand-coordinated anchoring, enable precise control over SACs properties. Characterization techniques like electron microscopy and spectroscopy reveal SACs structures and properties. Electron microscopy visualizes SACs morphology, while spectroscopy provides insights into metal atom coordination. In practical applications, MOF-supported SACs excel in proton-exchange membrane fuel cells (PEMFCs), direct formic acid fuel cells (DFAFCs), and Zn-air batteries (ZABs). They catalyze essential reactions, such as oxygen reduction and hydrogen oxidation, enhancing PEMFC efficiency and durability. In ZABs, SACs improve oxygen reduction and evolution reactions, boosting battery performance and stability. This review underscores the potential of MOF-derived SACs in sustainable energy conversion. By detailing synthesis, characterization, and applications, it contributes to the development of efficient catalysts for renewable energy technologies. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are revolutionizing electrocatalytic energy conversion.
引用
收藏
页码:18921 / 18947
页数:27
相关论文
共 50 条
  • [1] Advances in metal-organic framework-derived single-atom catalysts for biomedicine
    Qiu, Li
    Lin, Yingxi
    Chen, Jun Song
    Luo, Hong
    Wu, Rui
    NANO MATERIALS SCIENCE, 2024, 6 (04) : 396 - 412
  • [2] Advances in metal-organic framework-derived single-atom catalysts for biomedicine
    Li Qiu
    Yingxi Lin
    Jun Song Chen
    Hong Luo
    Rui Wu
    Nano Materials Science, 2024, 6 (04) : 396 - 412
  • [3] Metal-organic framework-derived single-atom catalysts for peroxymonosulfate-mediated organic wastewater remediation
    Li, Haitao
    Liu, Jian
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2023, 41
  • [4] Metal-organic framework assisted synthesis of single-atom catalysts for energy applications
    Yao Zheng
    Shi-Zhang Qiao
    NationalScienceReview, 2018, 5 (05) : 626 - 627
  • [5] Metal-organic framework assisted synthesis of single-atom catalysts for energy applications
    Zheng, Yao
    Qiao, Shi-Zhang
    NATIONAL SCIENCE REVIEW, 2018, 5 (05) : 626 - 627
  • [6] Metal-organic framework derived single-atom catalysts for CO2 conversion to methanol
    Xiao, Jiewen
    Zhang, Tianyu
    Wang, Qiang
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2022, 37
  • [7] Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion
    Tingting Sun
    Lianbin Xu
    Dingsheng Wang
    Yadong Li
    Nano Research, 2019, 12 : 2067 - 2080
  • [8] Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion
    Sun, Tingting
    Xu, Lianbin
    Wang, Dingsheng
    Li, Yadong
    NANO RESEARCH, 2019, 12 (09) : 2067 - 2080
  • [9] Metal-organic framework-derived single atom catalysts for electrocatalytic reduction of carbon dioxide to C1 products
    Han, Xu
    Zhang, Ting
    Arbiol, Jordi
    ENERGY ADVANCES, 2023, 2 (02): : 252 - 267
  • [10] Single-Atom Catalysts Derived from Metal-Organic Frameworks for Electrochemical Applications
    Zou, Lianli
    Wei, Yong-Sheng
    Hou, Chun-Chao
    Li, Caixia
    Xu, Qiang
    SMALL, 2021, 17 (16)