Hallucination Reduction and Optimization for Large Language Model-Based Autonomous Driving

被引:0
|
作者
Wang, Jue [1 ]
机构
[1] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD 21218 USA
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 09期
关键词
autonomous driving; large language models; hallucination reduction;
D O I
10.3390/sym16091196
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large language models (LLMs) are widely integrated into autonomous driving systems to enhance their operational intelligence and responsiveness and improve self-driving vehicles' overall performance. Despite these advances, LLMs still struggle between hallucinations-when models either misinterpret the environment or generate imaginary parts for downstream use cases-and taxing computational overhead that relegates their performance to strictly non-real-time operations. These are essential problems to solve to make autonomous driving as safe and efficient as possible. This work is thus focused on symmetrical trade-offs between the reduction of hallucination and optimization, leading to a framework for these two combined and at least specifically motivated by these limitations. This framework intends to generate a symmetry of mapping between real and virtual worlds. It helps in minimizing hallucinations and optimizing computational resource consumption reasonably. In autonomous driving tasks, we use multimodal LLMs that combine an image-encoding Visual Transformer (ViT) and a decoding GPT-2 with responses generated by the powerful new sequence generator from OpenAI known as GPT4. Our hallucination reduction and optimization framework leverages iterative refinement loops, RLHF-reinforcement learning from human feedback (RLHF)-along with symmetric performance metrics, e.g., BLEU, ROUGE, and CIDEr similarity scores between machine-generated answers specific to other human reference answers. This ensures that improvements in model accuracy are not overused to the detriment of increased computational overhead. Experimental results show a twofold improvement in decision-maker error rate and processing efficiency, resulting in an overall decrease of 30% for the model and a 25% improvement in processing efficiency across diverse driving scenarios. Not only does this symmetrical approach reduce hallucination, but it also better aligns the virtual and real-world representations.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Restricted Natural Language and Model-based Adaptive Test Generation for Autonomous Driving
    Shi, Yize
    Lu, Chengjie
    Zhang, Man
    Zhang, Huihui
    Yue, Tao
    Ali, Shaukat
    24TH INTERNATIONAL CONFERENCE ON MODEL-DRIVEN ENGINEERING LANGUAGES AND SYSTEMS (MODELS 2021), 2021, : 101 - 111
  • [2] Autonomous Driving Validation with Model-Based Dictionary Clustering
    Goffinet, Etienne
    Lebbah, Mustapha
    Azzag, Hanane
    Giraldi, Loic
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE TRACK, ECML PKDD 2020, PT IV, 2021, 12460 : 323 - 338
  • [3] Model-Based Probabilistic Collision Detection in Autonomous Driving
    Althoff, Matthias
    Stursberg, Olaf
    Buss, Martin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2009, 10 (02) : 299 - 310
  • [4] Bidirectional Planning for Autonomous Driving Framework with Large Language Model
    Ma, Zhikun
    Sun, Qicong
    Matsumaru, Takafumi
    SENSORS, 2024, 24 (20)
  • [5] Asynchronous Large Language Model Enhanced Planner for Autonomous Driving
    Chen, Yuan
    Ding, Zi-han
    Wang, Ziqin
    Wang, Yan
    Zhang, Lijun
    Liu, Si
    COMPUTER VISION - ECCV 2024, PT XXXVI, 2025, 15094 : 22 - 38
  • [6] Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving
    Bronstein, Eli
    Palatucci, Mark
    Notz, Dominik
    White, Brandyn
    Kuefler, Alex
    Lu, Yiren
    Paul, Supratik
    Nikdel, Payam
    Mougin, Paul
    Chen, Hongge
    Fu, Justin
    Abrams, Austin
    Shah, Punit
    Racah, Evan
    Frenkel, Benjamin
    Whiteson, Shimon
    Anguelov, Dragomir
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8652 - 8659
  • [8] A Large Language Model-Based Autonomous Scoring Method for Subjective Question Answering under English Context
    Wen, Ximeng
    Fu, Xinggan
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2025, 34 (03)
  • [9] A survey on large language model based autonomous agents
    Wang, Lei
    Ma, Chen
    Feng, Xueyang
    Zhang, Zeyu
    Yang, Hao
    Zhang, Jingsen
    Chen, Zhiyuan
    Tang, Jiakai
    Chen, Xu
    Lin, Yankai
    Zhao, Wayne Xin
    Wei, Zhewei
    Wen, Jirong
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (06)
  • [10] A survey on large language model based autonomous agents
    Lei Wang
    Chen Ma
    Xueyang Feng
    Zeyu Zhang
    Hao Yang
    Jingsen Zhang
    Zhiyuan Chen
    Jiakai Tang
    Xu Chen
    Yankai Lin
    Wayne Xin Zhao
    Zhewei Wei
    Jirong Wen
    Frontiers of Computer Science, 2024, 18