Transionospheric Synthetic Aperture Radar Observation: A comprehensive review

被引:2
|
作者
Ji, Yifei [1 ]
Dong, Zhen [1 ]
Zhang, Yongsheng [1 ]
Wang, Cheng [2 ]
Hu, Cheng [3 ]
Xu, Zhengwen [4 ]
机构
[1] NUDT, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
[2] China Acad Space Technol CAST, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[3] Univ Birmingham, Birmingham, England
[4] China Res Inst Radiowave Propagat CRIRP, Natl Key Lab Electromagnet Environm, Qingdao 266107, Peoples R China
基金
中国国家自然科学基金;
关键词
Synthetic aperture radar; L-band; Spaceborne radar; Reviews; Ionosphere; Electrons; Satellites; ANISOTROPIC IONOSPHERIC IRREGULARITIES; PHASE GRADIENT AUTOFOCUS; SAR IMAGING DEGRADATION; FARADAY-ROTATION; SPACEBORNE SAR; PERFORMANCE ANALYSIS; POLARIMETRIC DISPERSION; TEC RETRIEVAL; INSAR DATA; SCINTILLATION;
D O I
10.1109/MGRS.2024.3454635
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The ionosphere is the Earth's upper atmosphere with sufficiently charged particles that influence the electromagnetic wave propagation, thereby impeding spaceborne synthetic aperture radar (SAR) observations. High precision imaging and the measurements of geographic and geophysical processes using interferometric SAR (InSAR) and polarimetric SAR (Pol-SAR) are hampered. This study presents a detailed and comprehensive review of the research on ionospheric effects on SAR, InSAR, and Pol-SAR, their correction approaches, and reverse guidance for ionospheric sounding. The prospect is raised at the end of the paper, and the ionosphere will continue to be a research hotspot in the remote sensing community due to the development of low-frequency SAR satellites. In addition, applying spaceborne SAR to ionospheric sounding is a promising issue for space weather and geospace physics due to high spatiotemporal resolution and abundant parameter information.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] Transionospheric Autofocus for Synthetic Aperture Radar
    Gilman, Mikhail
    Tsynkov, Semyon V.
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (04): : 2144 - 2174
  • [2] Transionospheric Autofocus for Synthetic Aperture Radar
    Gilman, Mikhail
    Tsynkov, Semyon
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 24 - 24
  • [3] A Mathematical Observation On Synthetic Aperture Radar
    Cao, Yufeng
    Li, Shuxia
    Lopez, Juan
    Martinez, Alex
    Qiao, Zhijun
    RADAR SENSOR TECHNOLOGY XVII, 2013, 8714
  • [4] Synthetic Aperture Radar Imaging Meets Deep Unfolded Learning: A comprehensive review
    Wang, Mou
    Hu, Yifei
    Wei, Shunjun
    Shi, Jun
    Cui, Guolong
    Kong, Lingjiang
    Guo, Yongxin
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2025, 13 (01) : 79 - 120
  • [5] Review of synthetic aperture radar interference suppression
    Huang Y.
    Zhao B.
    Mingliang T.A.O.
    Chen Z.
    Hong W.
    Journal of Radars, 2020, 9 (01) : 86 - 106
  • [6] On the design of a VHF transionospheric synthetic-aperture radar for high-resolution remote terrain sensing
    Shteinshleiger, VB
    Dzenkevich, AV
    Manakov, VY
    Melnukov, LY
    Misezhnikov, GS
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (06): : 725 - 732
  • [7] A review of synthetic aperture radar jamming technique
    Li Y.
    Huang D.
    Xing S.
    Wang X.
    Journal of Radars, 2020, 9 (05) : 753 - 764
  • [8] Synthetic Aperture Radar (SAR) for Ocean: A Review
    Asiyabi, Reza Mohammadi
    Ghorbanian, Arsalan
    Tameh, Shaahin Nazarpour
    Amani, Meisam
    Jin, Shuanggen
    Mohammadzadeh, Ali
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9106 - 9138
  • [9] Fully polarimetric synthetic aperture radar indices for scintillation observation
    Mohanty, S.
    Singh, G.
    2019 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (AP-RASC), 2019,
  • [10] AIRBORNE SYNTHETIC APERTURE RADAR OBSERVATION OF SURF ZONE CONDITIONS
    SHUCHMAN, RA
    MEADOWS, GA
    GEOPHYSICAL RESEARCH LETTERS, 1980, 7 (11) : 857 - 860