Estimation of Kidney's Blood Vessels Deformations for Robot-Assisted Surgery

被引:0
|
作者
Lastrico, Riccardo [1 ]
Maccio, Simone [1 ]
Carfi, Alessandro [1 ]
Traverso, Paolo [2 ]
Mastrogiovanni, Fulvio [1 ]
机构
[1] Univ Genoa, Dept Informat Bioengn Robot & Syst Engn, Via Opera Pia 13, I-16145 Genoa, Italy
[2] Univ Genoa, Dipartimento Sci Chirurg & Diag Integrate, Viale Benedetto XV 6, I-16132 Genoa, Italy
关键词
Soft tissue deformation; Augmented surgery; Machine learning; REAL-TIME SIMULATION; MACHINE LEARNING APPROACH; PARTIAL NEPHRECTOMY; VIRTUAL SURGERY; BEHAVIOR; TECHNOLOGY; TISSUES;
D O I
10.1007/978-3-031-44981-9_35
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Surgical robotics may use augmented reality (AR) to provide surgeons with contextual information during operations. Relevant information to show to the surgeon are soft-tissue deformations. However, real-time computation of soft-tissue deformations is challenging with current techniques. A novel approach is proposed using Machine Learning (ML) to estimate, based on organ pose, deformations in the vein and artery. Simulated experiments were conducted using a kidney model from a patient's CT scan in a Simulation Open Framework Architecture (SOFA) platform, and data on blood vessel deformations were collected. Two ML models were trained, a feed-forward neural network and an LSTM, and their performances were compared. Although the results are preliminary, they demonstrate the potential of the proposed approach, particularly given the limited information required to perform the inference.
引用
收藏
页码:425 / 436
页数:12
相关论文
共 50 条
  • [1] Robot-assisted surgery in kidney transplantation
    Defortescu, G.
    Tillou, X.
    Badet, L.
    Barrou, B.
    Bessede, T.
    Blanchet, P.
    Boutin, J. M.
    Branchereau, J.
    Culty, T.
    Defortescu, G.
    Delaporte, V.
    Doerfler, A.
    Gaudez, F.
    Gigante, M.
    Karam, G.
    Kleinclauss, F.
    Neuzillet, Y.
    Sallusto, F.
    Salomon, L.
    Terrier, N.
    Tillou, X.
    Thuret, R.
    Timsit, M. O.
    Verhoest, G.
    PROGRES EN UROLOGIE, 2016, 26 (04): : F67 - F72
  • [2] Robot-assisted retroperitoneoscopic kidney surgery with Versius
    DAL Moro, Fabrizio
    Fracalanza, Simonetta
    Zattoni, Fabio
    Novara, Giacomo
    Gardi, Mario
    MINERVA UROLOGY AND NEPHROLOGY, 2024,
  • [3] Complications during robot-assisted kidney surgery
    Trinh, Q. D.
    Sukumar, S.
    Ghani, K. R.
    Sammon, J.
    Jeong, W.
    Jhaveri, J.
    Muhletaler, F.
    Ehlert, M.
    Menon, M.
    Rogers, C. G.
    EUROPEAN UROLOGY SUPPLEMENTS, 2012, 11 (01) : EV28 - EV28
  • [4] Augmented Reality supports robot-assisted Kidney Surgery
    Lorenz, Judith
    AKTUELLE UROLOGIE, 2024, 55 (04) : 286 - 286
  • [5] Joint Surgeon Attributes Estimation in Robot-Assisted Surgery
    Zhou, Tian
    Cha, Jackie S.
    Gonzalez, Glebys T.
    Wachs, Juan P.
    Sundaram, Chandru
    Yu, Denny
    COMPANION OF THE 2018 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'18), 2018, : 285 - 286
  • [6] Augmented Reality supports robot-assisted Kidney Surgery Comment
    Haney, Caelan Max
    Kowalewski, Karl-Friedrich
    AKTUELLE UROLOGIE, 2024, 55 (04)
  • [7] Robot-assisted kidney transplantation
    Zeuschner, P.
    Siemer, S.
    Stoeckle, M.
    UROLOGE, 2020, 59 (01): : 3 - 9
  • [8] Robot-assisted Kidney Transplantation
    Lim, Seong Jun
    Ko, Youngmin
    Kim, Dong Hyun
    Jung, Joo Hee
    Kwon, Hyunwook
    Kim, Young Hoon
    Shin, Sung
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (173):
  • [9] Robot-assisted surgery competencies
    Fearon, Mary C.
    AORN JOURNAL, 2017, 105 (05) : 516 - 516
  • [10] Robot-assisted abdominal surgery
    Gutt, CN
    Oniu, T
    Mehrabi, A
    Kashfi, A
    Schemmer, P
    Büchler, MW
    BRITISH JOURNAL OF SURGERY, 2004, 91 (11) : 1390 - 1397