Estimation of value-at-risk by Lp quantile regression

被引:0
|
作者
Sun, Peng [1 ]
Lin, Fuming [1 ,2 ]
Xu, Haiyang [1 ]
Yu, Kaizhi [3 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Math & Stat, Dept Stat, Zigong 643000, Sichuan, Peoples R China
[2] South Sichuan Ctr Appl Math, Zigong 643000, Sichuan, Peoples R China
[3] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R China
关键词
Calculation of VaR; L-p quantile regression; CLVaR models; GARCH models; CAR-L-p-quantile models;
D O I
10.1007/s10463-024-00911-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Exploring more accurate estimates of financial value at risk (VaR) has always been an important issue in applied statistics. To this end either quantile or expectile regression methods are widely employed at present, but an accumulating body of research indicates that L-p quantile regression outweighs both quantile and expectile regression in many aspects. In view of this, the paper extends L-p quantile regression to a general classical nonlinear conditional autoregressive model and proposes a new model called the conditional L-p quantile nonlinear autoregressive regression model (CAR-L-p-quantile model for short). Limit theorems for regression estimators are proved in mild conditions, and algorithms are provided for obtaining parameter estimates and the optimal value of p. Simulation study of estimation's quality is given. Then, a CLVaR method calculating VaR based on the CAR-L-p-quantile model is elaborated. Finally, a real data analysis is conducted to illustrate virtues of our proposed methods.
引用
收藏
页码:25 / 59
页数:35
相关论文
共 50 条
  • [1] Estimation of value-at-risk using single index quantile regression
    Christou, Eliana
    Grabchak, Michael
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (13) : 2418 - 2433
  • [2] QUANTILE ESTIMATION FOR COMPUTING VALUE-AT-RISK
    Iorgulescu, Filip
    Stancu, Ion
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ACCOUNTING AND MANAGEMENT INFORMATION SYSTEMS (AMIS 2012), 2012, : 649 - 660
  • [3] Evaluating Value-at-Risk Models via Quantile Regression
    Gaglianone, Wagner Piazza
    Lima, Luiz Renato
    Linton, Oliver
    Smith, Daniel R.
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2011, 29 (01) : 150 - 160
  • [4] Value-at-risk in the European energy market: a comparison of parametric, historical simulation and quantile regression value-at-risk
    Westgaard, Sjur
    Arhus, Gisle Hoel
    Frydenberg, Marina
    Frydenberg, Stein
    JOURNAL OF RISK MODEL VALIDATION, 2019, 13 (04): : 43 - 69
  • [5] Estimating value-at-risk using quantile regression and implied volatilities
    de Lange, Petter
    Risstad, Morten
    Westgaard, Sjur
    JOURNAL OF RISK MODEL VALIDATION, 2022, 16 (01): : 53 - 76
  • [6] Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression*
    Chronopoulos, Ilias
    Raftapostolos, Aristeidis
    Kapetanios, George
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 22 (03) : 636 - 669
  • [7] Quantile Uncertainty and Value-at-Risk Model Risk
    Alexander, Carol
    Maria Sarabia, Jose
    RISK ANALYSIS, 2012, 32 (08) : 1293 - 1308
  • [8] Estimation of extreme value-at-risk: An EVT approach for quantile GARCH model
    Yi, Yanping
    Feng, Xingdong
    Huang, Zhuo
    ECONOMICS LETTERS, 2014, 124 (03) : 378 - 381
  • [9] Value at risk estimation by quantile regression and kernel estimator
    Huang A.Y.
    Review of Quantitative Finance and Accounting, 2013, 41 (2) : 225 - 251
  • [10] Value at risk estimation based on generalized quantile regression
    Wang, Yongqiao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 674 - 678