Robust propensity score weighting estimation under missing at random
被引:0
|
作者:
Wang, Hengfang
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Sch Math & Stat, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Fujian, Peoples R ChinaFujian Normal Univ, Sch Math & Stat, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Fujian, Peoples R China
Wang, Hengfang
[1
]
Kim, Jae Kwang
论文数: 0引用数: 0
h-index: 0
机构:
Iowa State Univ, Dept Stat, Ames, IA 50011 USAFujian Normal Univ, Sch Math & Stat, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Fujian, Peoples R China
Kim, Jae Kwang
[2
]
Han, Jeongseop
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Stat, Seoul 08826, South KoreaFujian Normal Univ, Sch Math & Stat, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Fujian, Peoples R China
Han, Jeongseop
[3
]
Lee, Youngjo
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Stat, Seoul 08826, South KoreaFujian Normal Univ, Sch Math & Stat, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Fujian, Peoples R China
Lee, Youngjo
[3
]
机构:
[1] Fujian Normal Univ, Sch Math & Stat, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Fujian, Peoples R China
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[3] Seoul Natl Univ, Dept Stat, Seoul 08826, South Korea
Covariate balancing;
information projection;
gamma- power divergence;
missing data;
EFFICIENT ESTIMATION;
REGRESSION;
INFERENCE;
INFORMATION;
IMPUTATION;
MODELS;
D O I:
10.1214/24-EJS2263
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Missing data is frequently encountered in many areas of statistics. One popular approach to address this issue is through the use of propensity score weighting. However, correctly specifying the statistical model can be a daunting task. Doubly robust estimation is attractive, as the consistency of the estimator is guaranteed when either the outcome regression model or the propensity score model is correctly specified. In this paper, we first employ information projection to develop an efficient and doubly robust estimator via indirect model calibration. The resulting propensity score estimator can be equivalently expressed as a doubly robust regression imputation estimator by imposing the internal bias calibration condition in estimating the regression parameters. In addition, using the gamma-divergence measure, we generalize the information projection to allow for outlier-robust propensity score estimation. The study includes the presentation of certain asymptotic properties and findings from a simulation study, which demonstrate that the proposed method enables robust inference, not only in cases of various model assumptions being violated but also in the presence of outliers. A real-life application is also presented using data from the Conservation Effects Assessment Project.
机构:
Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Fujian, Peoples R China
Fujian Normal Univ, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Fujian, Peoples R ChinaFujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Fujian, Peoples R China
Wang, Hengfang
Kim, Jae Kwang
论文数: 0引用数: 0
h-index: 0
机构:
Iowa State Univ, Dept Stat, 2438 Osborn Dr, Ames, IA 50011 USAFujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Fujian, Peoples R China
机构:
Montana State Univ, Dept Math Sci, Bozeman, MT 59717 USAMontana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
Shetty, Samidha
Ma, Yanyuan
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, State Coll, PA USAMontana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
Ma, Yanyuan
Zhao, Jiwei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Stat, Madison, WI USA
Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USAMontana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
机构:
Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
Duke Univ, Duke Global Hlth Inst, Durham, NC USADuke Univ, Dept Biostat & Bioinformat, Durham, NC USA
Zhou, Yunji
Matsouaka, Roland A.
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
Duke Clin Res Inst, Program Comparat Effectiveness Methodol, Durham, NC USADuke Univ, Dept Biostat & Bioinformat, Durham, NC USA
Matsouaka, Roland A.
Thomas, Laine
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
Duke Clin Res Inst, Program Comparat Effectiveness Methodol, Durham, NC USADuke Univ, Dept Biostat & Bioinformat, Durham, NC USA