Dress Code Monitoring Method in Industrial Scene Based on Improved YOLOv8n and DeepSORT

被引:0
|
作者
Zou, Jiadong [1 ]
Song, Tao [1 ]
Cao, Songxiao [1 ]
Zhou, Bin [1 ]
Jiang, Qing [1 ]
机构
[1] China Jiliang Univ, Coll Metrol Measurement & Instrument, Hangzhou 310018, Peoples R China
关键词
dress code monitoring; YOLOv8n; RFAConv; FLatten; DeepSORT; judgment criterion;
D O I
10.3390/s24186063
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning-based object detection has become a powerful tool in dress code monitoring. However, even state-of-the-art detection models inevitably suffer from false alarms or missed detections, especially when handling small targets such as hats and masks. To overcome these limitations, this paper proposes a novel method for dress code monitoring using an improved YOLOv8n model, the DeepSORT tracking, and a new dress code judgment criterion. We improve the YOLOv8n model through three means: (1) a new neck structure named FPN-PAN-FPN (FPF) is introduced to enhance the model's feature fusion capability, (2) Receptive-Field Attention convolutional operation (RFAConv) is utilized to better capture the difference in information brought by different positions, and a (3) Focused Linear Attention (FLatten) mechanism is added to expand the model's receptive field. This improved YOLOv8n model increases mAP while reducing model size. Next, DeepSORT is integrated to obtain instance information across multi-frames. Finally, we adopt a new judgment criterion to conduct real-scene dress code monitoring. The experimental results show that our method effectively identifies instances of dress violations, reduces false alarms, and improves accuracy.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Improved YOLOv8n based helmet wearing inspection method
    Chen, Xinying
    Jiao, Zhisheng
    Liu, Yuefan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [2] Chili Pepper Object Detection Method Based on Improved YOLOv8n
    Ma, Na
    Wu, Yulong
    Bo, Yifan
    Yan, Hongwen
    PLANTS-BASEL, 2024, 13 (17):
  • [3] Improved Peanut Quality Detection Method of YOLOv8n
    Huang, Yinglai
    Niu, Dawei
    Hou, Chang
    Yang, Liusong
    Computer Engineering and Applications, 2024, 60 (23) : 257 - 267
  • [4] A Lightweight Method for Road Damage Detection Based on Improved YOLOv8n
    Li, Xudong
    Zhang, Yujun
    ENGINEERING LETTERS, 2025, 33 (01) : 114 - 123
  • [5] Maize Seed Damage Identification Method Based on Improved YOLOV8n
    Yang, Songmei
    Wang, Benxu
    Ru, Shaofeng
    Yang, Ranbing
    Wu, Jilong
    AGRONOMY-BASEL, 2025, 15 (03):
  • [6] SMEA-YOLOv8n: A Sheep Facial Expression Recognition Method Based on an Improved YOLOv8n Model
    Yu, Wenbo
    Yang, Xiang
    Liu, Yongqi
    Xuan, Chuanzhong
    Xie, Ruoya
    Wang, Chuanjiu
    ANIMALS, 2024, 14 (23):
  • [7] Research on Bubble Detection Based on Improved YOLOv8n
    Chen, Tingting
    Zeng, Qingzhu
    IEEE ACCESS, 2024, 12 : 9659 - 9668
  • [8] ESFD-YOLOv8n: Early Smoke and Fire Detection Method Based on an Improved YOLOv8n Model
    Mamadaliev, Dilshodjon
    Touko, Philippe Lyonel Mbouembe
    Kim, Jae-Ho
    Kim, Suk-Chan
    FIRE-SWITZERLAND, 2024, 7 (09):
  • [9] CAMLLA-YOLOv8n: Cow Behavior Recognition Based on Improved YOLOv8n
    Jia, Qingxiang
    Yang, Jucheng
    Han, Shujie
    Du, Zihan
    Liu, Jianzheng
    ANIMALS, 2024, 14 (20):
  • [10] Waste drilling fluid flocculation identification method based on improved YOLOv8n
    Wan, Min
    Yang, Xin
    Zhang, Huaibang
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2025, 96 (01):