High-Loading Carbon Nanotubes on Polymer Nanofibers as Stand-Alone Anode Materials for Li-Ion Batteries

被引:14
|
作者
Lim, Alan Christian [1 ]
Jadhav, Harsharaj S. [1 ]
Kwon, Hyuk Jae [2 ]
Seo, Jeong Gil [1 ]
机构
[1] Myongji Univ, Dept Energy Sci & Technol, 116 Myongji Ro, Yongin 17058, Gyeonggi Do, South Korea
[2] Samsung Elect Co Ltd, Samsung Adv Inst Technol, 130 Samsung Ro, Suwon 16678, Gyeonggi Do, South Korea
来源
ACS OMEGA | 2019年 / 4卷 / 02期
基金
新加坡国家研究基金会;
关键词
PERFORMANCE; SENSORS; STATE; CO3O4;
D O I
10.1021/acsomega.8b03073
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To address the instability and repulsive interaction of carbon nanotubes (CNTs) in Li-ion batteries, mixed polymers (polyacrylonitrile and polyvinylpyrrolidone) were employed as matrix support to ensure that CNT particles remain in place during charge/discharge process and prevent particle migration. Various CNT-based anodes have been reported, but these require metal support that could result in contact resistance. Hence, free-standing CNT electrodes are an attractive option. A simple method of electrospinning polymers and calcination at 800 degrees C is presented with CNT loading as high as 50 wt % can be obtained without binder and acts as main active material rather than an additive as described in previous studies. The anode [pyrolyzed polymer (PP)-CNT] showed excellent performance with a high discharge specific capacity of 960 mA h/g at a current density of 200 mA/g. The capacity at a higher current density (1600 mA/g) remained greater than graphite (372 mA h/g) at 521 mA h/g and showed a high stability for 675 cycles without exhibiting any significant capacity loss with a Coulombic efficiency of > 95%. A rate capability experiment showed the reversibility of PP-CNTs after subjecting them to an increasing current density and regaining > 95% of the initial capacity at a low current density (200 mA/g). The high capacitive performance of the material is attributed to the high loading of CNTs and their containment within the bulk of the polymer matrix to prevent particle migration and agglomeration as well as the capacity of the nanofibers to preserve a tight proximity of the electrolyte-electrode interface.
引用
收藏
页码:4129 / 4137
页数:9
相关论文
共 50 条
  • [1] Prospectives for the Use of Li-Ion Batteries in Hybrid Stand-Alone Power Sources
    Khantimerov, Sergey
    Fatykhov, Ranis
    Suleimanov, Nail
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2019, 20 (02)
  • [2] Silicon/carbon composites as anode materials for Li-ion batteries
    Liu, Y
    Hanai, K
    Yang, J
    Imanishi, N
    Hirano, A
    Takeda, Y
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (10) : A369 - A372
  • [3] Nanostructured anode materials for Li-ion batteries
    Zhao, Nahong
    Fu, Lijun
    Yang, Lichun
    Zhang, Tao
    Wang, Gaojun
    Wu, Yuping
    van Ree, Teunis
    PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2283 - 2295
  • [4] Composite anode materials for Li-ion batteries
    Wen, Zhaoyin
    Yang, Xuefin
    Huang, Shahua
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 1041 - 1045
  • [5] Nanocomposite anode materials for Li-ion batteries
    Wada, M
    Yin, J
    Tanabe, E
    Kitano, Y
    Tanase, S
    Kajita, O
    Sakai, T
    ELECTROCHEMISTRY, 2003, 71 (12) : 1064 - 1066
  • [6] Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries
    Lahiri, Indranil
    Oh, Seung-Min
    Hwang, Jun Y.
    Kang, Chiwon
    Choi, Mansoo
    Jeon, Hyeongtag
    Banerjee, Rajarshi
    Sun, Yang-Kook
    Choi, Wonbong
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (35) : 13621 - 13626
  • [7] Aqueous Binder for Nanostructured Carbon Anode Materials for Li-Ion Batteries
    Lis, Marcelina
    Chudzik, Krystian
    Bakierska, Monika
    Swietoslawski, Michal
    Gajewska, Marta
    Rutkowska, Malgorzata
    Molenda, Marcin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (03) : A5354 - A5361
  • [8] Hard carbon/lithium composite anode materials for Li-ion batteries
    Sun, Hao
    He, Xiangming
    Ren, Jianguo
    Li, Jianjun
    Jiang, Changyin
    Wan, Chunrong
    ELECTROCHIMICA ACTA, 2007, 52 (13) : 4312 - 4316
  • [9] Electrospun NiO nanofibers as high performance anode material for Li-ion batteries
    Aravindan, Vanchiappan
    Kumar, Palaniswamy Suresh
    Sundaramurthy, Jayaraman
    Ling, Wong Chui
    Ramakrishna, Seeram
    Madhavi, Srinivasan
    JOURNAL OF POWER SOURCES, 2013, 227 : 284 - 290
  • [10] Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries
    Zhang, Y.
    Zhang, X. G.
    Zhang, H. L.
    Zhao, Z. G.
    Li, F.
    Liu, C.
    Cheng, H. M.
    ELECTROCHIMICA ACTA, 2006, 51 (23) : 4994 - 5000