In this study trisubstituted imidazole was synthesized in high yields via a component's reaction of aromatic aldehydes, benzil, and ammonium acetate catalyzed by glacial acetic acid employing microwaves irradiation and comparing it to conventional methods, using a basic synthetic process and a simple purification method. Microwave irradiation is an easy, clean, rapid, effective, and inexpensive method for synthesizing organic compounds that has become known as a tool for green chemistry. By using this method, chemical reactions can be sped up from hours to minutes. All of the prepared compounds were investigated using a variety of spectroscopic methods, including FT-IR, 1HNMR, 13C NMR, and C.H.N. Their (in vitro) antibacterial activities on three bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) were evaluated. The disk test diffusion method was used to evaluate the new imidazole derivatives as a potential antibacterial activity. Among the compounds tested compounds 4b and 4c showed the highest antibacterial activities at a concentration of 200 mu g/mL and 300 mu g/mL respectively. The newly synthesized four compounds were evaluated in silico by docking studies to recognize their biological activities and they produced positive docking scores and acceptable binding interactions in molecular docking tests on the target Staphylococcus aureus, Escherichia coli, and Bacillus subtilis as receptors (PDB ID: 6xji, 6ul7 and 7asa) respectively. The molecular docking results showed that 4b with Staphylococcus aureus, compound 4c with Escherichia coli, and compound 4c with Bacillus subtilis are well and have the lowest binding energies in the active site areas of all targets. The current findings show that the recently synthesized compounds have promising inhibitory efficacy and can be used as antibacterial.