Finiteness conditions for the n-fold tensor product of groups

被引:0
|
作者
Bastos, Raimundo [1 ]
Ortega, Guilherme [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Finitely presented groups; finiteness conditions; non-abelian tensor product of groups; n-fold tensor product; HOMOLOGY; EXTERIOR;
D O I
10.1142/S0219498825502287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finitely generated group. We prove that the n-fold tensor product G(circle times n) is finite (respectively, polycyclic) if and only if G is finite (respectively, polycyclic). Further, assuming that G is finitely presented, we show that G(circle times n) is finitely presented if and only if gamma(n)(G) is finitely presented. We also examine some finiteness conditions for the non-abelian tensor product of groups.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The n-fold central Haagerup tensor product
    Coates, KJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 : 413 - 424
  • [2] Finiteness conditions for the non-abelian tensor product of groups
    R. Bastos
    I. N. Nakaoka
    N. R. Rocco
    Monatshefte für Mathematik, 2018, 187 : 603 - 615
  • [3] Finiteness conditions for the non-abelian tensor product of groups
    Bastosl, R.
    Nakaoka, I. N.
    Rocco, N. R.
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 603 - 615
  • [4] HOMOTOPY GROUPS OF AN N-FOLD WEDGE
    BROWN, R
    HARDY, L
    MORRIS, SA
    MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (02) : 119 - 121
  • [5] On the n-fold symmetric product suspensions of a continuum
    Barragan, Franco
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (03) : 597 - 604
  • [6] On the finiteness of the non-abelian tensor product of groups
    Bastos, Raimundo
    Nakaoka, Irene N.
    Rocco, Norai R.
    JOURNAL OF ALGEBRA, 2025, 664 : 251 - 267
  • [7] Induced maps on n-fold symmetric product suspensions
    Barragan, Franco
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (10) : 1192 - 1205
  • [8] ON THE REDUCTION OF N-FOLD TENSOR-PRODUCTS IN SU(2)
    KLINK, WH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (09): : 1845 - 1854
  • [9] Geometry of good sets in n-fold Cartesian product
    Klopotowski, A
    Nadkarni, MG
    Rao, KPSB
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (02): : 181 - 197
  • [10] N-fold parasupersymmetry
    Tanaka, Toshiaki
    MODERN PHYSICS LETTERS A, 2007, 22 (29) : 2191 - 2200