Collaborative forecasting management model for multi-energy microgrid considering load response characterization
被引:0
|
作者:
Bao, Huiyu
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R ChinaNorth China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
Bao, Huiyu
[1
]
Sun, Yi
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R ChinaNorth China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
Sun, Yi
[1
]
Peng, Jie
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R ChinaNorth China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
Peng, Jie
[1
]
Qian, Xiaorui
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Fujian Mkt Serv Ctr, Metering Ctr, Fuzhou, Fujian, Peoples R China
Integrated Capital Ctr, Fuzhzou, Fujian, Peoples R ChinaNorth China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
Qian, Xiaorui
[2
,3
]
Wu, Peng
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Energy Res Inst Co Ltd, Beijing, Peoples R ChinaNorth China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
Wu, Peng
[4
]
机构:
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China
[2] State Grid Fujian Mkt Serv Ctr, Metering Ctr, Fuzhou, Fujian, Peoples R China
[3] Integrated Capital Ctr, Fuzhzou, Fujian, Peoples R China
[4] State Grid Energy Res Inst Co Ltd, Beijing, Peoples R China
energy management systems;
learning (artificial intelligence);
load forecasting;
multi-agent systems;
D O I:
10.1049/rpg2.13076
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Multi-energy microgrids (MEMG) have become an effective means of integrated energy management due to their unique advantages, including area independence, diverse supply, flexibility, and efficiency. However, the uncertain deviation of the renewable energy generators (REGs) output and the uncertain deviation of the multiple energy load response cumulatively lead to the deterioration of the MEMG model performance. To address these issues, this article proposes a cooperative forecasting management model for MEMG that considers multiple uncertainties and load response knowledge characterization. The model combines a multi-energy load prediction model with a management model based on deep reinforcement learning. It proposes multiple iterations of data, fits the dynamic environment of MEMG by continuously improving the long short-term memory (LSTM) neural network based on knowledge distillation (KD) architecture, and then optimizes the MEMG state space by considering the knowledge of load response characteristics, Furthermore, it combines multi-agent deep deterministic policy gradient (MADDPG) with horizontal federated (hF) learning to co-train multi-MEMG, addressing the issues of training efficiency during co-training. Finally, the validity of the proposed model is demonstrated by an arithmetic example. The park MES forecasting management architecture contains four layers of structure respectively (physical layer, co-management student network layer, teacher network layer, load forecasting student network layer) with three phases of process (park load forecasting, multi-park MES co-management, and data iteration). image
机构:
Elect Power Res Inst State Grid Hubei Elect Power, Wuhan 430077, Hubei, Peoples R ChinaElect Power Res Inst State Grid Hubei Elect Power, Wuhan 430077, Hubei, Peoples R China
Shen, Yu
Hu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Elect Power Res Inst State Grid Hubei Elect Power, Wuhan 430077, Hubei, Peoples R ChinaElect Power Res Inst State Grid Hubei Elect Power, Wuhan 430077, Hubei, Peoples R China
Hu, Wei
Liu, Mao
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R ChinaElect Power Res Inst State Grid Hubei Elect Power, Wuhan 430077, Hubei, Peoples R China
Liu, Mao
Yang, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Elect Power Res Inst State Grid Hubei Elect Power, Wuhan 430077, Hubei, Peoples R ChinaElect Power Res Inst State Grid Hubei Elect Power, Wuhan 430077, Hubei, Peoples R China
Yang, Fan
Kong, Xiangyu
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R ChinaElect Power Res Inst State Grid Hubei Elect Power, Wuhan 430077, Hubei, Peoples R China
机构:
Guangdong Energy Group Science and Technology Research Institute Co, Guangzhou, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
Yao, Yong
Li, Shizhu
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Energy Group Science and Technology Research Institute Co, Guangzhou, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
Li, Shizhu
Wu, Zhichao
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Energy Group Science and Technology Research Institute Co, Guangzhou, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
Wu, Zhichao
Yu, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Energy Group Science and Technology Research Institute Co, Guangzhou, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
Yu, Chi
Liu, Xinglei
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
Liu, Xinglei
Yuan, Keyu
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
Yuan, Keyu
Liu, JiaCheng
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
Liu, JiaCheng
Wu, Zeyang
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
Wu, Zeyang
Liu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an, ChinaGuangdong Energy Group Science and Technology Research Institute Co, Guangzhou, China
机构:
Technol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Yao, Yong
Li, Shizhu
论文数: 0引用数: 0
h-index: 0
机构:
Technol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Li, Shizhu
Wu, Zhichao
论文数: 0引用数: 0
h-index: 0
机构:
Technol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Wu, Zhichao
Yu, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Technol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Yu, Chi
Liu, Xinglei
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Liu, Xinglei
Yuan, Keyu
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Yuan, Keyu
Liu, JiaCheng
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Liu, JiaCheng
Wu, Zeyang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China
Wu, Zeyang
Liu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Shaanxi Key Lab Smart Grid, Xian, Peoples R ChinaTechnol Res Inst Co Ltd, Guangdong Energy Grp Sci, Guangzhou, Peoples R China