Semantic Shape Editing with Parametric Implicit Templates

被引:1
|
作者
Kusupati, Uday [1 ,2 ]
Gaillard, Mathieu [1 ]
Thiery, Jean-Marc [3 ]
Kaiser, Adrien [3 ]
机构
[1] Adobe Res, Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Adobe Res, Clermont Ferrand, France
关键词
implicit fields; parametric templates; mesh deformation;
D O I
10.1145/3641519.3657421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a semantic shape editing method to edit 3D triangle meshes using parametric implicit surface templates, benefiting from the many advantages offered by analytical implicit representations, such as infinite resolution and boolean or blending operations. We propose first a template fitting method to optimize its parameters to best capture the input mesh. For subsequent template edits, our novel mesh deformation method allows tracking the template's 0-set even when featuring anisotropic stretch and/or local volume change. We make few assumptions on the template implicit fields and only strictly require continuity. We demonstrate applications to interactive semantic shape editing and semantic mesh retargeting.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Learning Shape Templates with Structured Implicit Functions
    Genova, Kyle
    Cole, Forrester
    Vlasic, Daniel
    Sarna, Aaron
    Freeman, William T.
    Funkhouser, Thomas
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7153 - 7163
  • [2] Semantic Shape Editing Using Deformation Handles
    Yumer, Mehmet Ersin
    Chaudhuri, Siddhartha
    Hodgins, Jessica K.
    Kara, Levent Burak
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [3] Deep Implicit Templates for 3D Shape Representation
    Zheng, Zerong
    Yu, Tao
    Dai, Qionghai
    Liu, Yebin
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1429 - 1439
  • [4] DDIT: Semantic Scene Completion via Deformable Deep Implicit Templates
    Li, Haoang
    Dong, Jinhu
    Wen, Binghui
    Gao, Ming
    Huang, Tianyu
    Liu, Yun-Hui
    Cremers, Daniel
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21837 - 21847
  • [5] Learning to Infer Semantic Parameters for 3D Shape Editing
    Wei, Fangyin
    Sizikova, Elena
    Sud, Avneesh
    Rusinkiewicz, Szymon
    Funkhouser, Thomas
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 434 - 442
  • [6] Semantic parametric body shape estimation from noisy depth sequences
    Ichim, Alexandru Eugen
    Tombari, Federico
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 539 - 549
  • [7] Robustifying Generalizable Implicit Shape Networks with a Tunable Non-Parametric Model
    Ouasfi, Amine
    Boukhayma, Adnane
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Unification of parametric and implicit methods for shape sensitivity analysis and optimization with fixed mesh
    Zhang, Weihong
    Huang, Qiangqiang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (03) : 326 - 344
  • [9] Parametric editing in AutoCAD
    不详
    MACHINE DESIGN, 1996, 68 (05) : 206 - 206
  • [10] BioAssay templates for the semantic web
    Clark, Alex M.
    Litterman, Nadia K.
    Kranz, Janice E.
    Gund, Peter
    Gregory, Kellan
    Bunin, Barry A.
    PEERJ COMPUTER SCIENCE, 2016, PeerJ Inc. (2016)