Compute SNDR-Boosted 22-nm MRAM-Based In-Memory Computing Macro Using Statistical Error Compensation

被引:1
|
作者
Roy, Saion K. [1 ]
Ou, Han-Mo [1 ]
Ahmed, Mostafa G. [1 ,2 ]
Deaville, Peter [3 ]
Zhang, Bonan
Verma, Naveen [3 ,4 ]
Hanumolu, Pavan K. [1 ]
Shanbhag, Naresh R. [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn ECE, Urbana, IL 61801 USA
[2] Ain Shams Univ, Dept Elect Engn & Elect Commun, Cairo 11566, Egypt
[3] Princeton Univ, Dept Elect & Comp Engn ECE, Princeton, NJ 08544 USA
[4] EnCharge, Princeton, NJ USA
关键词
Compute signal-to-noise-plus-distortion ratio (SNDR); embedded non-volatile memory (eNVM); in-memory computing (IMC); magnetoresistive random-access memory (MRAM); ACCURACY;
D O I
10.1109/JSSC.2024.3442013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accuracy of embedded non-volatile memory (eNVM) in-memory computing (IMC) designs is primarily limited by analog non-idealities. This article introduces a magnetoresistive random-access memory (MRAM) IMC macro in 22-nm featuring offset-compensating current sensing (OCCS) to reduce the static analog-to-digital converter (ADC) column mismatch and a low-overhead statistical error compensation (SEC) block compensating for non-linearity arising due to bitline/source-line (BL/SL) wire parasitics. Both assist in enhancing the bank-level compute signal-to-noise-plus-distortion ratio (SNDR). As the inner dimension of the matrix-vector multiplication (MVM) increases, the compute SNDR reduces due to increased location-dependent non-linearity arising from BL/SL wire parasitics. An SEC-enabled SNDR boost of 2.7-6 dB is obtained over different operating points. This boost can be balanced to achieve a substantial 5 x reduction in energy per 1-b operation while incurring a modest SEC energy overhead of 0.8% and area overhead of 12.2% . Finally, the study demonstrates an SEC-enabled increase in neural network (NN) accuracy from 74.8% to 82.0% for CIFAR-10 by last layer mapping of ResNet-20, without resorting to noise-aware training.
引用
收藏
页码:1092 / 1102
页数:11
相关论文
共 4 条
  • [1] Compute SNR-boosted 22 nm MRAM-based In-memory Computing Macro using Statistical Error Compensation
    Roy, Saion K.
    Ou, Han-Mo
    Ahmed, Mostafa G.
    Deaville, Peter
    Zhang, Bonan
    Verma, Naveen
    Hanumolu, Pavan K.
    Shanbhag, Naresh R.
    IEEE 49TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE, ESSCIRC 2023, 2023, : 25 - 28
  • [2] A 14 nm MRAM-Based Multi-bit Analog In-Memory Computing With Process-Variation Calibration for 72 Macros-Based Accelerator
    Myung, Sungmeen
    Yun, Seok-Ju
    Kim, Minje
    Yi, Wooseok
    Lee, Jaehyuk
    An, Jangho
    Lee, Kyoung-Rog
    Shin, Chang-Woo
    Jung, Seungchul
    Kwon, Soonwan
    IEEE SOLID-STATE CIRCUITS LETTERS, 2024, 7 : 295 - 298
  • [3] A 22-nm 264-GOPS/mm2 6T SRAM and Proportional Current Compute Cell-Based Computing-in-Memory Macro for CNNs
    Liu, Feiran
    Yin, Anran
    Xue, Chen
    Wang, Bo
    Feng, Zhongyuan
    Liu, Han
    Li, Xiang
    Gao, Hui
    Xiong, Tianzhu
    Si, Xin
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2024, 32 (12) : 2389 - 2393
  • [4] A Charge Domain SRAM Compute-in-Memory Macro With C-2C Ladder-Based 8-Bit MAC Unit in 22-nm FinFET Process for Edge Inference
    Wang, Hechen
    Liu, Renzhi
    Dorrance, Richard
    Dasalukunte, Deepak
    Lake, Dan
    Carlton, Brent
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023, 58 (04) : 1037 - 1050