A Priori error estimates of Runge-Kutta discontinuous Galerkin schemes to smooth solutions of fractional

被引:0
|
作者
Leotta, Fabio [1 ]
Giesselmann, Jan [1 ]
机构
[1] Tech Univ Darmstadt, Dept Math, Darmstadt, Germany
关键词
A priori error estimation; fractional convection-diffusion; fractional conservation laws; hyperbolic conservation laws; discontinuous Galerkin method; CONSERVATION; DIFFUSION;
D O I
10.1051/m2an/2024043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a priori error estimates of second order in time fully explicit Runge-Kutta discontinuous Galerkin schemes using upwind fluxes to smooth solutions of scalar fractional conservation laws in one space dimension. Under the time step restrictions tau <= ch for piecewise linear and tau less than or similar to h(4/3) for higher order finite elements, we prove a convergence rate for the energy norm & Vert;& sdot;& Vert;L-t infinity L(x)2+|& sdot;|L(x)2H(x)lambda/2 that is optimal for solutions and flux functions that are smooth enough. Our proof relies on a novel upwind projection of the exact solution.
引用
收藏
页码:1301 / 1315
页数:15
相关论文
共 50 条
  • [1] Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws
    Zhang, Q
    Shu, CW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) : 641 - 666
  • [2] A PRIORI ERROR ESTIMATES TO SMOOTH SOLUTIONS OF THE THIRD ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN METHOD FOR SYMMETRIZABLE SYSTEMS OF CONSERVATION LAWS
    Luo, Juan
    Shu, Chi-Wang
    Zhang, Qiang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 991 - 1018
  • [3] Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws
    Zhang, Qiang
    Shu, Chi-Wang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1703 - 1720
  • [4] Error estimates for the Runge-Kutta discontinuous galerkin method for the transport equation with discontinuous initial data
    Cockburn, Bernardo
    Guzman, Johnny
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1364 - 1398
  • [5] ERROR ESTIMATES OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL SYSTEM
    Yang, He
    Li, Fengyan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 69 - 99
  • [6] STABILITY ANALYSIS AND A PRIORI ERROR ESTIMATES OF THE THIRD ORDER EXPLICIT RUNGE-KUTTA DISCONTINUOUS GALERKIN METHOD FOR SCALAR CONSERVATION LAWS
    Zhang, Qiang
    Shu, Chi-Wang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) : 1038 - 1063
  • [7] Runge-Kutta discontinuous Galerkin method for detonation waves
    Zhang, Lei
    Yuan, Li
    Jisuan Wuli/Chinese Journal of Computational Physics, 2010, 27 (04): : 509 - 517
  • [8] A Runge-Kutta discontinuous Galerkin method for the Euler equations
    Tang, HZ
    Warnecke, G
    COMPUTERS & FLUIDS, 2005, 34 (03) : 375 - 398
  • [9] Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods
    Akrivis, Georgios
    Makridakis, Charalambos
    Nochetto, Ricardo H.
    NUMERISCHE MATHEMATIK, 2009, 114 (01) : 133 - 160
  • [10] An efficient parallel implementation of explicit multirate Runge-Kutta schemes for discontinuous Galerkin computations
    Seny, Bruno
    Lambrechts, Jonathan
    Toulorge, Thomas
    Legat, Vincent
    Remacle, Jean-Francois
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 256 : 135 - 160