MOF-derived Mo-doped Co3O4: A hierarchical yeast-like structure for superior carbon monoxide sensing

被引:10
|
作者
Hussain, Shahid [1 ,2 ]
Begi, Amensisa Negasa [1 ,5 ]
Amu-Darko, Jesse Nii Okai [1 ]
Yusuf, Kareem [3 ]
Manavalan, Rajesh Kumar [4 ]
Iqbal, Amjad [6 ]
Zhang, Xiangzhao [1 ]
Qiao, Guanjun [1 ]
Liu, Guiwu [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
[2] Univ Sargodha, Dept Phys, Sargodha 40100, Pakistan
[3] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
[4] Ural Fed Univ, Inst Nat Sci & Math, Ekaterinburg 620002, Russia
[5] Ambo Univ, Coll Nat & Computat Sci, Dept Phys, POB 19, Ambo 13340, Ethiopia
[6] Silesian Tech Univ, Dept Mat Technol, Fac Mat Engn, Krasinskiego 8, PL-40019 Katowice, Poland
来源
基金
中国国家自然科学基金;
关键词
MOF; Co; 3; O; 4; Mo-doping; Yeast-like nanostructure; CO gas sensor; METAL-ORGANIC FRAMEWORKS; GAS SENSOR; CO; NANOSTRUCTURES; PERFORMANCE; HETEROSTRUCTURE; NANOCUBES;
D O I
10.1016/j.snb.2024.136489
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Carbon monoxide (CO) is one of the most dangerous gases owing to its dual threat, role in global warming, and severe impact on human health. Metal-organic framework (MOF) gas-sensing materials have drawn the interest of many different sectors due to their unique structural characteristics. This study used a solvothermal technique and subsequent annealing to create a hierarchical, yeast-shaped Mo-Co3O4 material from a Co-MOF precursor. The prepared materials have been employed in the development of a CO-detection gas sensor. Gas-sensing experiments revealed that Mo-Co3O4 exhibited significantly improved sensing capabilities compared to pure Co3O4. Notably, at 200 degrees C, 2 mol% Mo-Co3O4 showed high response levels of about 136 at 100 ppm CO concentrations, approximately 50.4 times higher than pure Co3O4. Furthermore, the Mo-doped material exhibited a low detection threshold, excellent reproducibility, long-term stability, good selectivity, and rapid response and recovery times (78.5/55.3 s). Introducing Mo dopants into the Co3O4 material and the hierarchical yeast-like nanostructure are responsible for these improvements in gas-sensing capability.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] MOF-derived Mo-doped stacked Co3O4 nanosheets for chemiresistive toluene vapor sensing
    Yang, Wei
    Fang, Baijun
    Zhang, Yuanhui
    Meng, Hu
    He, Jianwang
    Liu, Shantang
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 396
  • [2] Facile Synthesis of MOF-Derived Hierarchical Flower-Like Sr-Doped Co3O4 Structure for Effective TEA Sensing
    Sun, Heming
    Tang, Xiaonian
    IEEE SENSORS JOURNAL, 2022, 22 (24) : 23773 - 23779
  • [3] POM-assisted coating of MOF-derived Mo-doped Co3O4 nanoparticles on carbon nanotubes for upgrading oxygen evolution reaction
    Lu, Kanglong
    Gu, Tengteng
    Zhang, Linjie
    Wu, Zhicheng
    Wang, Ruihu
    Li, Xiaoju
    CHEMICAL ENGINEERING JOURNAL, 2021, 408
  • [4] MOF-derived bow-like Ga-doped Co3O4 hierarchical architectures for enhanced triethylamine sensing performance
    Sun, Heming
    Tang, Xiaonian
    Zhang, Jiarui
    Li, Shuo
    Li Liu
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 346
  • [5] Metal-organic framework-derived hierarchical flower-like Mo-doped Co3O4 for enhanced triethylamine sensing properties
    Du, Liyong
    Sun, Heming
    Liu, Yi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 900
  • [6] Mof-derived hierarchical Co3O4 assembled by porous nanocages towards toluene-sensing ability
    Zhang, Yuanhui
    Fang, Baijun
    Meng, Hu
    Yang, Wei
    MATERIALS LETTERS, 2024, 355
  • [7] MOF-derived Co3O4 hierarchical porous structure for enhanced acetone sensing performance with high sensitivity and low detection limit
    Guo, Rong
    Hou, Xinghui
    Shi, Caixin
    Zhang, Wenpu
    Zhou, Ying
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 376
  • [8] MOF-Derived Hollow and Porous Co3O4 Nanocages for Superior Hybrid Supercapacitor Electrodes
    Zhang, Huifang
    Yan, Bing
    Zhou, Chungui
    Wang, Jun
    Duan, Haoyan
    Zhang, Dongmei
    Zhao, Heming
    ENERGY & FUELS, 2021, 35 (20) : 16925 - 16932
  • [9] MOF-derived one-dimensional Ru/Mo co-doped Co3O4 hollow microtubes for high-performance triethylamine sensing
    Sun, Heming
    Tang, Xiaonian
    Li, Shuo
    Yao, Ye
    Liu, Li
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 383
  • [10] Synthesis and gas-sensitive properties of Ga doped in MOF-derived Co3O4
    Guang, Huanzhu
    Liu, Jiongjiang
    Zhang, Guo
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (08):