Gompf's Cork and Heegaard Floer Homology

被引:0
|
作者
Dai, Irving [1 ]
Mallick, Abhishek [2 ]
Zemke, Ian [3 ,4 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08854 USA
[3] Princeton Univ, Dept Math, Princeton, NJ USA
[4] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
HOLOMORPHIC DISKS; DECOMPOSITION; INVARIANTS; KNOTS;
D O I
10.1093/imrn/rnae180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gompf showed that for $K$ in a certain family of double-twist knots, the swallow-follow operation makes $1/n$-surgery on $K \# -K$ into a cork boundary. We derive a general Floer-theoretic condition on $K$ under which this is the case. Our formalism allows us to produce many further examples of corks, partially answering a question of Gompf. Unlike Gompf's method, our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also generalizes to other diffeomorphisms.
引用
收藏
页码:12663 / 12682
页数:20
相关论文
共 50 条
  • [1] Heegaard Floer homology of Matsumoto's manifolds
    Tange, Motoo
    ADVANCES IN MATHEMATICS, 2017, 320 : 475 - 499
  • [2] INVOLUTIVE HEEGAARD FLOER HOMOLOGY
    Hendricks, Kristen
    Manolescu, Ciprian
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (07) : 1211 - 1299
  • [3] Cornered Heegaard Floer Homology
    Douglas, Christopher L.
    Lipshitz, Robert
    Manolescu, Ciprian
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 262 (1266) : 1 - +
  • [4] Introduction to Heegaard Floer homology
    Gorsky, E. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (01) : 1 - 35
  • [5] Bordered Heegaard Floer Homology
    Lipshitz, Robert
    Ozsvath, Peter S.
    Thurston, Dylan P.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 255 (1216) : 1 - +
  • [6] Heegaard Floer homology and splicing homology spheres
    Karakurt, Cagri
    Lidman, Tye
    Tweedy, Eamonn
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (01) : 93 - 106
  • [7] Combinatorial Heegaard Floer homology and nice Heegaard diagrams
    Ozsvath, Peter
    Stipsicz, Andras I.
    Szabo, Zoltan
    ADVANCES IN MATHEMATICS, 2012, 231 (01) : 102 - 171
  • [8] Corks, involutions, and Heegaard Floer homology
    Dai, Irving
    Hedden, Matthew
    Mallick, Abhishek
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (06) : 2319 - 2389
  • [9] A cylindrical reformulation of Heegaard Floer homology
    Lipshitz, Robert
    GEOMETRY & TOPOLOGY, 2006, 10 : 955 - 1097
  • [10] Heegaard Floer homology as morphism spaces
    Lipshitz, Robert
    Ozsvath, Peter S.
    Thurston, Dylan P.
    QUANTUM TOPOLOGY, 2011, 2 (04) : 381 - 449