Extendable birational transformations belonging to Galois points

被引:0
|
作者
Miura, Kei [1 ]
机构
[1] Natl Inst Technol, Ube Coll, Dept Math, 2-14-1 Tokiwadai, Ube, Yamaguchi 7558555, Japan
关键词
Galois point; Birational transformation; Cremona transformation; de Jonqui & egrave; res transformations;
D O I
10.1007/s12215-024-01107-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study birational transformations belonging to Galois points. Let P be a Galois point for a plane curve C and GP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_P$$\end{document} be a Galois group at P. Then an element of GP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_P$$\end{document} induces a birational transformation of C. In general, it is difficult to determine when this birational transformations can be extended to a Cremona (or projective) transformation. In this note, we shall prove that if the Galois group is isomorphic to the cyclic group of order three, then any element of the Galois group has an expression as a de Jonqui & egrave;res transformation. In particular, they can be extended to Cremona transformations.
引用
收藏
页码:3327 / 3331
页数:5
相关论文
共 50 条