Galois point;
Birational transformation;
Cremona transformation;
de Jonqui & egrave;
res transformations;
D O I:
10.1007/s12215-024-01107-2
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study birational transformations belonging to Galois points. Let P be a Galois point for a plane curve C and GP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_P$$\end{document} be a Galois group at P. Then an element of GP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_P$$\end{document} induces a birational transformation of C. In general, it is difficult to determine when this birational transformations can be extended to a Cremona (or projective) transformation. In this note, we shall prove that if the Galois group is isomorphic to the cyclic group of order three, then any element of the Galois group has an expression as a de Jonqui & egrave;res transformation. In particular, they can be extended to Cremona transformations.
机构:
Department of Mathematics, Ube National College of Technology, Ube, YamaguchiDepartment of Mathematics, Ube National College of Technology, Ube, Yamaguchi
Miura K.
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry,
2013,
54
(1):
: 303
-
309