The Artin component and simultaneous resolution via reconstruction algebras of type A

被引:0
|
作者
Makonzi, Brian [1 ,2 ]
机构
[1] Makerere Univ, Dept Math, POB 7062, Kampala, Uganda
[2] Univ Glasgow, Math & Stat Bldg,Univ Pl, Glasgow City G12 8QQ, Scotland
基金
欧洲研究理事会;
关键词
Versal deformation; Artin component; simultaneous resolution; reconstruction algebras; SINGULARITIES; CONSTRUCTION; DEFORMATIONS;
D O I
10.4171/JNCG/552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper uses noncommutative resolutions of non-Gorenstein singularities to construct classical deformation spaces by recovering the Artin component of the deformation space of a cyclic surface singularity using only the quiver of the corresponding reconstruction algebra. The relations of the reconstruction algebra are then deformed, and the deformed relations together with variation of the GIT quotient achieve the simultaneous resolution. This extends the work of Brieskorn, Kronheimer, Grothendieck, Cassens-Slodowy, and Crawley-Boevey-Holland into the setting of singularities C-2/H with H <= GL(2, C) and furthermore gives a prediction for what is true more generally.
引用
收藏
页码:1229 / 1264
页数:36
相关论文
共 50 条