Effect of Energy Density on the Mechanical Properties of 1.2709 Maraging Steel Produced by Laser Powder Bed Fusion

被引:0
|
作者
Hatos, Istvan [1 ]
Hargitai, Hajnalka [1 ]
Fekete, Gusztav [1 ]
Fekete, Imre [1 ]
机构
[1] Szecheny Istvan Univ, Aud Hungaria Fac Vehicle Engn, Dept Mat Sci & Technol, H-9026 Gyor, Hungary
关键词
additive manufacturing; impact energy; energy density; porosity; 1.2709; steel; POROSITY; QUALITY;
D O I
10.3390/ma17143432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The unusual combination of the fundamentally contradictory properties of high tensile strength and high fracture toughness found in maraging steel makes it well suited for safety-critical applications that require high strength-to-weight materials. In certain instances, additive manufacturing (AM) has produced materials that may be desirable for safety-critical applications where impact toughness is a key property, such as structural parts for the aerospace industry or armor plates for military applications. Understanding the influence of process parameters and defect structure on the properties of maraging steel parts produced via laser powder bed fusion (LPBF) is a fundamental step towards the broader use of AM technologies for more demanding applications. In this research, the impact energy of V-notched specimens made of 1.2709 maraging steel produced by LPBF was determined via Charpy impact testing. Specimens were produced using different processing parameter sets. By combining the process parameters with the porosity values of the parts, we demonstrate that an almost full prediction of the impact properties can be achieved, paving the way for significantly reducing the expenses of destructive testing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hybrid optimisation studies on the microstructural properties and wear resistance of maraging steel 1.2709 parts produced by laser powder bed fusion
    Maodzeka, Divine Kudakwashe
    Olakanmi, Eyitayo Olatunde
    Mosalagae, Mosalagae
    Hagedorn-Hansen, Devon
    Pityana, Sisa Lesley
    OPTICS AND LASER TECHNOLOGY, 2023, 159
  • [2] Low-temperature precipitation strengthening of maraging steel 1.2709 produced by powder bed fusion
    Kucerova, Ludmila
    Benediktova, Anna
    Burdova, Karolina
    Jandova, Dagmar
    MATERIALS & DESIGN, 2024, 241
  • [3] Effect of duplex surface treatment on the impact properties of maraging steel produced by laser powder bed fusion
    Tekin, T.
    Maines, L.
    Naclerio, F.
    Ipek, R.
    Molinari, A.
    POWDER METALLURGY, 2024, 67 (4-5) : 219 - 227
  • [4] Effect of Volumetric Energy Density on Microstructure and Properties of Grade 300 Maraging Steel Fabricated by Laser Powder Bed Fusion
    Kannan, Rangasayee
    List, Fred
    Joslin, Chase
    Rossy, Andres Marquez
    Nandwana, Peeyush
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (04): : 1062 - 1069
  • [5] Effect of Volumetric Energy Density on Microstructure and Properties of Grade 300 Maraging Steel Fabricated by Laser Powder Bed Fusion
    Rangasayee Kannan
    Fred List
    Chase Joslin
    Andres Marquez Rossy
    Peeyush Nandwana
    Metallurgical and Materials Transactions A, 2023, 54 : 1062 - 1069
  • [6] HEAT TREATMENT EFFECT ON MARAGING STEEL MANUFACTURED BY LASER POWDER BED FUSION TECHNOLOGY: MICROSTRUCTURE AND MECHANICAL PROPERTIES
    Stornelli, Giulia
    Gaggia, Damiano
    Rallini, Marco
    Di Schino, Andrea
    ACTA METALLURGICA SLOVACA, 2021, 27 (03): : 122 - 126
  • [7] Tomography of Laser Powder Bed Fusion Maraging Steel
    Cerezo, Pablo M.
    Aguilera, Jose A.
    Garcia-Gonzalez, Antonio
    Lopez-Crespo, Pablo
    MATERIALS, 2024, 17 (04)
  • [8] On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing
    Jarfors, Anders E.W.
    Matsushita, Taishi
    Siafakas, Dimitrios
    Stolt, Roland
    Materials and Design, 2021, 204
  • [9] On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing
    Jarfors, Anders E. W.
    Matsushita, Taishi
    Siafakas, Dimitrios
    Stolt, Roland
    MATERIALS & DESIGN, 2021, 204
  • [10] Microstructural and mechanical properties of a novel cobalt and titanium free maraging steel for laser powder bed fusion
    Lupi, Giorgia
    Bettini, Eleonora
    Deirmina, Faraz
    Casati, Riccardo
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 1269 - 1278