Short-Term Load Forecasting: A Comprehensive Review and Simulation Study With CNN-LSTM Hybrids Approach

被引:5
|
作者
Ullah, Kaleem [1 ]
Ahsan, Muhammad [2 ]
Hasanat, Syed Muhammad [1 ]
Haris, Muhammad [3 ]
Yousaf, Hamza [4 ]
Raza, Syed Faraz [2 ]
Tandon, Ritesh [5 ]
Abid, Samain [2 ]
Ullah, Zahid [6 ]
机构
[1] Univ Engn & Technol, Ctr Adv Studies Energy, Peshawar UET Peshawar, Peshawar 25000, Pakistan
[2] Univ Alabama Birmingham, Dept Comp Sci, Birmingham, AL 35294 USA
[3] Georgia State Univ, Inst Insight, J Mack Robinson Coll Business, Atlanta, GA 30303 USA
[4] Mercer Univ, Stetson Hatcher Sch Business, Macon, GA 30341 USA
[5] Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN 47405 USA
[6] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Short-term load forecasting; convolution neural network; hybrid LSTM-CNN network; NTDC Pakistan; power balancing operation; SUPPORT VECTOR REGRESSION; NEURAL-NETWORK; MODE DECOMPOSITION; FEATURE-SELECTION; POWER; GENERATION; ENERGY;
D O I
10.1109/ACCESS.2024.3440631
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Short-term load forecasting (STLF) is vital in effectively managing the reserve requirement in modern power grids. Subsequently, it supports the grid operator in making effective and economical decisions during the power balancing operation. Therefore, this study comprehensively reviews STLF methods, including time series analysis, regression-based frameworks, artificial neural networks (ANNs), and hybrid models that employ different forecasting approaches. Detailed mathematical and graphical analyses and a comparative evaluation of these methods are provided, highlighting their advantages and disadvantages. Further, the study proposes a hybrid CNN-LSTM model comprised of Convolutional neural networks (CNN) for feature extraction of high dimensional data and Long short-term memory (LSTM) networks to boost the model's efficiency for temporal sequence prediction. This study assessed the model using a comprehensive dataset from Pakistan's NTDC national grid. The analysis revealed superior performance in short-term load prediction, achieving enhanced accuracy. For single-step forecasting, the model yielded an RMSE of 538.71, MAE of 371.97, and MAPE of 2.72. In 24-hour forecasting, it achieved an RMSE of 951.94, MAE of 656.35, and MAPE of 4.72 on the NTDC dataset. Moreover, the model has outperformed previous models in comparison using the AEP dataset, demonstrating its superiority in enhancing reserve management and balancing supply and demand in modern electricity networks.
引用
收藏
页码:111858 / 111881
页数:24
相关论文
共 50 条
  • [1] Short-Term Electricity Load Forecasting Based on NeuralProphet and CNN-LSTM
    Lu, Shuai
    Bao, Taotao
    IEEE ACCESS, 2024, 12 : 76870 - 76879
  • [2] A CNN-LSTM Hybrid Model Based Short-term Power Load Forecasting
    Ren, Chang
    Jia, Li
    Wang, Zhangliang
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 182 - 186
  • [3] Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting
    Alhussein, Musaed
    Aurangzeb, Khursheed
    Haider, Syed Irtaza
    IEEE ACCESS, 2020, 8 : 180544 - 180557
  • [4] Short-Term Load Forecasting in Power System Using CNN-LSTM Neural Network
    Truong Hoang Bao Huy
    Dieu Ngoc Vo
    Khai Phuc Nguyen
    Viet Quoc Huynh
    Minh Quang Huynh
    Khoa Hoang Truong
    2023 ASIA MEETING ON ENVIRONMENT AND ELECTRICAL ENGINEERING, EEE-AM, 2023,
  • [5] Short-term Load Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model
    Lu J.
    Zhang Q.
    Yang Z.
    Tu M.
    Lu J.
    Peng H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (08): : 131 - 137
  • [6] Domain Fusion CNN-LSTM for Short-Term Power Consumption Forecasting
    Shao, Xiaorui
    Pu, Chen
    Zhang, Yuxin
    Kim, Chang Soo
    IEEE ACCESS, 2020, 8 : 188352 - 188362
  • [7] A short term load forecasting of integrated energy system based on CNN-LSTM
    Qi, Xianjun
    Zheng, Xiwei
    Chen, Qinghui
    2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020), 2020, 185
  • [8] Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model
    Shang, Chuan
    Gao, Junwei
    Liu, Huabo
    Liu, Fuzheng
    IEEE ACCESS, 2021, 9 : 50344 - 50357
  • [9] The Effect of Input Length on Prediction Accuracy in Short-Term Multi-Step Electricity Load Forecasting: A CNN-LSTM Approach
    Ozdemir, Seyda
    Demir, Yakup
    Yildirim, Ozal
    IEEE ACCESS, 2025, 13 : 28419 - 28432
  • [10] Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism
    Wan, Anping
    Chang, Qing
    AL-Bukhaiti, Khalil
    He, Jiabo
    ENERGY, 2023, 282