Regional Multi-Agent Cooperative Reinforcement Learning for City-Level Traffic Grid Signal Control

被引:2
|
作者
Li, Yisha [1 ,2 ]
Zhang, Ya [1 ,2 ]
Li, Xinde [1 ,2 ]
Sun, Changyin [1 ,2 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
[2] Southeast Univ, Key Lab Measurement & Control Complex Syst Engn, Minist Educ, Nanjing 210096, Peoples R China
关键词
Q-learning; Human-machine systems; Heuristic algorithms; Feature extraction; Real-time systems; Human-machine cooperation; mixed domain attention mechanism; multi-agent reinforcement learning; spatio-temporal feature; traffic signal control;
D O I
10.1109/JAS.2024.124365
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system. A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency. Firstly a regional multi-agent Q-learning framework is proposed, which can equivalently decompose the global Q value of the traffic system into the local values of several regions. Based on the framework and the idea of human-machine cooperation, a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to real-time traffic flow densities. In order to achieve better cooperation inside each region, a lightweight spatio-temporal fusion feature extraction network is designed. The experiments in synthetic, real-world and city-level scenarios show that the proposed RegionSTLight converges more quickly, is more stable, and obtains better asymptotic performance compared to state-of-the-art models.
引用
收藏
页码:1987 / 1998
页数:12
相关论文
共 50 条
  • [1] Regional Multi-Agent Cooperative Reinforcement Learning for City-Level Traffic Grid Signal Control
    Yisha Li
    Ya Zhang
    Xinde Li
    Changyin Sun
    IEEE/CAAJournalofAutomaticaSinica, 2024, 11 (09) : 1987 - 1998
  • [2] Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach
    Kolat, Mate
    Kovari, Balint
    Becsi, Tamas
    Aradi, Szilard
    SUSTAINABILITY, 2023, 15 (04)
  • [3] Cooperative Traffic Signal Control Based on Multi-agent Reinforcement Learning
    Gao, Ruowen
    Liu, Zhihan
    Li, Jinglin
    Yuan, Quan
    BLOCKCHAIN AND TRUSTWORTHY SYSTEMS, BLOCKSYS 2019, 2020, 1156 : 787 - 793
  • [4] Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control
    Zhao, Yang
    Hu, Jian-Ming
    Gao, Ming-Yang
    Zhang, Zuo
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 458 - 470
  • [5] Multi-agent Reinforcement Learning for Traffic Signal Control
    Prabuchandran, K. J.
    Kumar, Hemanth A. N.
    Bhatnagar, Shalabh
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 2529 - 2534
  • [6] Multiple intersections traffic signal control based on cooperative multi-agent reinforcement learning
    Liu, Junxiu
    Qin, Sheng
    Su, Min
    Luo, Yuling
    Wang, Yanhu
    Yang, Su
    INFORMATION SCIENCES, 2023, 647
  • [7] Swarm Reinforcement Learning for traffic signal control based on cooperative multi-agent framework
    Tahifa, Mohammed
    Boumhidi, Jaouad
    Yahyaouy, Ali
    2015 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2015,
  • [8] CLlight: Enhancing representation of multi-agent reinforcement learning with contrastive learning for cooperative traffic signal control
    Fu, Xiang
    Ren, Yilong
    Jiang, Han
    Lv, Jiancheng
    Cui, Zhiyong
    Yu, Haiyang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [9] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Zhimin Qiao
    Liangjun Ke
    Xiaoqiang Wang
    Applied Intelligence, 2023, 53 : 4483 - 4498
  • [10] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Qiao, Zhimin
    Ke, Liangjun
    Wang, Xiaoqiang
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4483 - 4498