Image Super-Resolution Reconstruction Method based on Improved Cyclic Generative Adversarial Network with Twin Attention Mechanism

被引:0
|
作者
Chen, Zongren [1 ,2 ]
Yan, Jin [1 ]
Hu, Bin [3 ]
Li, Jianqing [1 ]
机构
[1] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau 999078, Peoples R China
[2] Guangdong Polytech Sci & Technol, Comp Engn Tech Coll, Artificial Intelligence Coll, Zhuhai 519090, Peoples R China
[3] Macao Univ Sci & Technol, Fac Humanities & Arts, Taipa 999078, Macao, Peoples R China
关键词
D O I
10.2352/J.ImagingSci.Technol.2024.68.4.040401
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The existence of noise components will affect the quality of image super-resolution reconstruction, so an image super-resolution reconstruction method based on improved cyclic generative countermeasure network is proposed. Using the image denoising regularization method, the internal noise of the original image is removed. By introducing the twin attention mechanism into the cyclic generative countermeasure network, an improved cyclic generative countermeasure network is obtained. In the improved cyclic generative countermeasure network, the twin attention model is used to extract the denoised image features, and the super-resolution reconstruction image is generated with the generator. The network discriminator is used to identify whether the reconstructed image is a real image, and the output identification result is a real image to obtain the relevant image super-resolution reconstruction results. Experiments show that this method can effectively denoise the original image and extract image features, and can also reconstruct the image with high quality to improve image resolution and clarity. At different image magnifications, the structural similarity of image reconstruction using this method is high. The subjective opinion score of the image super-resolution reconstruction result of this method is high, with a maximum score of 4.8. The perception index and Frechet inception distance are both small, with values of 21.65 and 14.84, respectively. The image super-resolution reconstruction effect is good.
引用
收藏
页码:29 / 29
页数:1
相关论文
共 50 条
  • [1] Image super-resolution reconstruction based on improved generative adversarial network
    Wang Y.-L.
    Li X.-J.
    Ma H.-B.
    Ding Q.
    Pirouz M.
    Ma Q.-T.
    Journal of Network Intelligence, 2021, 6 (02): : 155 - 163
  • [2] Image Super-resolution Reconstruction Based on an Improved Generative Adversarial Network
    Liu, Han
    Wang, Fan
    Liu, Lijun
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,
  • [3] Infrared image super-resolution reconstruction by using generative adversarial network with an attention mechanism
    Liu, Qing-Ming
    Jia, Rui-Sheng
    Liu, Yan-Bo
    Sun, Hai-Bin
    Yu, Jian-Zhi
    Sun, Hong-Mei
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2018 - 2030
  • [4] Infrared image super-resolution reconstruction by using generative adversarial network with an attention mechanism
    Qing-Ming Liu
    Rui-Sheng Jia
    Yan-Bo Liu
    Hai-Bin Sun
    Jian-Zhi Yu
    Hong-Mei Sun
    Applied Intelligence, 2021, 51 : 2018 - 2030
  • [5] Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network
    Zha Tibo
    Luo Lin
    Yang Kai
    Zhang Yu
    Li Jinlong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (08)
  • [6] Image Super-Resolution Reconstruction Based on Self-Attention Mechanism and Deep Generative Adversarial Network
    Zhao, Yu-Feng
    He, Jie
    Journal of Network Intelligence, 2024, 9 (04): : 1936 - 1950
  • [7] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [8] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)
  • [9] Image Super-Resolution Reconstruction Algorithm Based on Improved Enhanced Generative Adversarial Network
    She, Xiangyang
    Yang, Qinghao
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 644 - 651
  • [10] Single frame image super-resolution reconstruction based on improved generative adversarial network
    Chen Zong-hang
    Hu Hai-long
    Yao Jian-min
    Yan Qun
    Lin Zhi-xian
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (05) : 705 - 712