Symbolic-Numeric Solving Boundary Value Problems: Collective Models of Atomic Nuclei

被引:0
|
作者
Batgerel, Balt [1 ]
Chuluunbaatar, Ochbadrakh [1 ,2 ,3 ]
Derbov, Vladimir L. [4 ]
Gusev, Alexander A. [2 ,5 ]
Hai, Luong Le [6 ]
Deveikis, Algirdas [7 ]
Hess, Peter O. [8 ,9 ]
Mardyban, Evgenii, V [2 ]
Mardyban, Mariia A. [2 ,5 ]
Vinitsky, Sergue, I [2 ,10 ]
Wen, Peiwei [11 ]
机构
[1] Mongolian Acad Sci, Inst Math & Digital Technol, Ulaanbaatar, Mongolia
[2] Joint Inst Nucl Res, Dubna, Russia
[3] Mongolian Univ Sci & Technol, Sch Appl Sci, Dept Math, Ulaanbaatar, Mongolia
[4] NG Chernyshevsky Saratov Natl Res State Univ, Saratov, Russia
[5] Dubna State Univ, Dubna, Russia
[6] Ho Chi Minh City Univ Educ, Ho Chi Minh City, Vietnam
[7] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania
[8] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City, DF, Mexico
[9] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[10] Peoples Friendship Univ Russia RUDN Univ, Moscow, Russia
[11] China Inst Atom Energy, Beijing 102413, Peoples R China
来源
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2024 | 2024年 / 14938卷
关键词
Multidimensional boundary value problems; Finite elements method; Computational schemes; Hermite interpolation polynomials; Collective models of atomic nucleus;
D O I
10.1007/978-3-031-69070-9_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computational schemes of the Galerkin type method (GTM) and finite elements method (FEM) for solving elliptic multidimensional boundary value problems (BVPs) with variable coefficients of derivatives in a polyhedral d-dimensional domain, aimed at describing collective models of atomic nuclei are presented. The solution is sought in the form of an expansion in the GTM basis and/or in the FEM basis of piecewise polynomial functions constructed in analytical form by joining Hermite interpolation polynomials and their derivatives at the boundaries of neighboring finite elements, which have the form of d-dimensional parallelepipeds. The BVPs are formulated and analyzed for collective models including the mixed derivative of the two-dimensional vibrational part of the five-dimensional Hamiltonian in the representation of the nuclear spin angular momentum in the intrinsic reference frame defined by three Euler angles. Benchmark calculations demonstrate performance and robustness of the approach when applied to calculate the lower part of the energy spectrum and the reduced electric transition probabilities in quadrupole collective models of atomic nuclei. The calculations of the band spectrum of 154Gd isotope using tabulated variable coefficients of the BVP evaluated in the self-consistent relativistic mean-field model revealed a possibility of quasicrossing of energy levels belonging to different rotational bands of a nucleus at high spin values.
引用
收藏
页码:63 / 81
页数:19
相关论文
共 50 条
  • [1] A symbolic-numeric method for solving boundary value problems of Kirchhoff rods
    Shu, L
    Weber, A
    COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS, 2005, 3718 : 387 - 398
  • [2] Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model of Atomic Nuclei
    Deveikis, Algirdas
    Gusev, Alexander A.
    Vinitsky, Sergue, I
    Blinkov, Yuri A.
    Gozdz, Andrzej
    Pedrak, Aleksandra
    Hess, Peter O.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022), 2022, 13366 : 103 - 123
  • [3] On symbolic-numeric solving of sine-polynomial equations
    Maignan, A
    JOURNAL OF COMPLEXITY, 2000, 16 (01) : 274 - 285
  • [4] A Symbolic-Numeric Method for Solving the Poisson Equation in Polar Coordinates
    Vorozhtsov, Evgenii V.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2023, 2023, 14139 : 330 - 349
  • [5] Symbolic-Numeric Algorithms for Solving BVPs for a System of ODEs of the Second Order: Multichannel Scattering and Eigenvalue Problems
    Gusev, A. A.
    Gerdt, V. P.
    Hai, L. L.
    Derbov, V. L.
    Vinitsky, S. I.
    Chuluunbaatar, O.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2016, 2016, 9890 : 212 - 227
  • [6] Symbolic-Numeric Solution of Boundary-Value Problems for the Schrodinger Equation Using the Finite Element Method: Scattering Problem and Resonance States
    Gusev, A. A.
    Le Hai, L.
    Chuluunbaatar, O.
    Ulziibayar, V.
    Vinitsky, S. I.
    Derbov, V. L.
    Gozdz, A.
    Rostovtsev, V. A.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2015), 2015, 9301 : 182 - 197
  • [7] Symbolic-numeric efficient solution of optimal control problems for multibody systems
    Bertolazzi, E
    Biral, F
    Da Lio, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 185 (02) : 404 - 421
  • [8] Solving polynomial systems via symbolic-numeric reduction to geometric involutive form
    Reid, Greg
    Zhi, Lihong
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (03) : 280 - 291
  • [9] Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models
    Gusev, A. A.
    Chuluunbaatar, O.
    Gerdt, V. P.
    Rostovtsev, V. A.
    Vinitsky, S. I.
    Derbov, V. L.
    Serov, V. V.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2010, 6244 : 106 - +
  • [10] Construction of Explicit Optimal Value Functions by a Symbolic-Numeric Cylindrical Algebraic Decomposition
    Iwane, Hidenao
    Kira, Akifumi
    Anai, Hirokazu
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2011, 6885 : 239 - +