Fokker-Planck modeling of the stochastic dynamics of a Rijke tube

被引:3
|
作者
Lee, Minwoo [1 ,2 ]
Gupta, Vikrant [3 ,4 ]
Li, Larry K. B. [2 ,5 ]
机构
[1] Hanbat Natl Univ, Dept Mech Engn, Daejeon 34158, South Korea
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven Fl, Shenzhen 518055, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
[5] Hong Kong Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven Fl, Clear Water Bay, Hong Kong, Peoples R China
关键词
NOISE-INDUCED DYNAMICS; THERMOACOUSTIC OSCILLATIONS; FORCED SYNCHRONIZATION; COHERENCE RESONANCE; COMBUSTION INSTABILITY; PERIODIC OSCILLATIONS; SYSTEM-IDENTIFICATION; ACTIVE CONTROL; BIFURCATIONS; FLAME;
D O I
10.1063/5.0211656
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive and numerically validate a low-order oscillator model to capture the stochastic dynamics of a prototypical thermoacoustic system (a Rijke tube) undergoing a subcritical Hopf bifurcation in the presence of additive noise. We find that on the fixed-point branch before the bifurcation, the system is dominated by the first duct mode, and the Fokker-Planck solution for the first Galerkin mode can adequately predict the stochastic dynamics of the overall system. We also find that this analytical framework predicts well the dominant mode on the limit-cycle branch, but underperforms in the hysteretic bistable zone where the role of nonlinearities is more pronounced. Besides offering new insights into stochastic thermoacoustic behavior, this study shows that an analytical framework based on the Fokker-Planck equation can facilitate the early detection of thermoacoustic instabilities in a Rijke-tube model subjected to noise.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Stochastic dynamics and Fokker-Planck equation in accelerator physics
    Mais, H
    Zorzano, MP
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1999, 112 (05): : 467 - 474
  • [2] STOCHASTIC QUANTIZATION AND DETAILED BALANCE IN FOKKER-PLANCK DYNAMICS
    GARRIDO, L
    LURIE, D
    SANMIGUEL, M
    JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (03) : 313 - 335
  • [3] Quantum Fokker-Planck Dynamics
    Labuschagne, Louis
    Majewski, W. Adam
    ANNALES HENRI POINCARE, 2022, 23 (05): : 1659 - 1691
  • [4] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [5] Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation
    Magdziarz, Marcin
    Weron, Aleksander
    Weron, Karina
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [6] A stochastic model of grain boundary dynamics: A Fokker-Planck perspective
    Epshteyn, Yekaterina
    Liu, Chun
    Mizuno, Masashi
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (11): : 2189 - 2236
  • [7] STOCHASTIC MODELING OF GENERALIZED FOKKER-PLANCK EQUATIONS .1.
    STILLMAN, AE
    FREED, JH
    JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (01): : 550 - 566
  • [8] Stochastic nonlinear Fokker-Planck equations
    Coghi, Michele
    Gess, Benjamin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 259 - 278
  • [9] Generalized Stochastic Fokker-Planck Equations
    Chavanis, Pierre-Henri
    ENTROPY, 2015, 17 (05) : 3205 - 3252
  • [10] Stochastic modeling of fMRI time-series with Fokker-Planck equations
    Jiang, TZ
    Kruggel, FJ
    NEUROIMAGE, 2001, 13 (06) : S167 - S167