Improved Deepfake Video Detection Using Convolutional Vision Transformer

被引:2
|
作者
Deressa, Deressa Wodajo
Lambert, Peter [1 ]
Van Wallendael, Glenn [1 ]
Atnafu, Solomon [2 ]
Mareen, Hannes [1 ]
机构
[1] Univ Ghent, IMEC, IDLab, Dept Elect & Informat Syst, Ghent, Belgium
[2] Addis Ababa Univ, Addis Ababa, Ethiopia
关键词
Deepfake Video Detection; Vision Transformer; Convolutional Neural Network; Misinformation Detection; Multimedia Forensics;
D O I
10.1109/GEM61861.2024.10585593
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deepfakes are hyper-realistic videos in which the faces are replaced, swapped, or forged using deep-learning models. This potent media manipulation techniques hold promise for applications across various domains. Yet, they also present a significant risk when employed for malicious intents like identity fraud, phishing, spreading false information, and executing scams. In this work, we propose a novel and improved Deepfake video detector that uses a Convolutional Vision Transformer (CViT2), which builds on the concepts of our previous work (CViT). The CViT architecture consists of two components: a Convolutional Neural Network that extracts learnable features, and a Vision Transformer that categorizes these learned features using an attention mechanism. We trained and evaluted our model on 5 datasets, namely Deepfake Detection Challenge Dataset (DFDC), FaceForensics++ (FF++), Celeb-DF v2, Deep-fakeTIMIT, and TrustedMedia. On the test sets unseen during training, we achieved an accuracy of 95%, 94.8%, 98.3% and 76.7% on the DFDC, FF++, Celeb-DF v2, and TIMIT datasets, respectively. In conclusion, our proposed Deepfake detector can be used in the battle against misinformation and other forensic use cases.
引用
收藏
页码:492 / 497
页数:6
相关论文
共 50 条
  • [1] DeepFake detection algorithm based on improved vision transformer
    Heo, Young-Jin
    Yeo, Woon-Ha
    Kim, Byung-Gyu
    APPLIED INTELLIGENCE, 2023, 53 (07) : 7512 - 7527
  • [2] DeepFake detection algorithm based on improved vision transformer
    Young-Jin Heo
    Woon-Ha Yeo
    Byung-Gyu Kim
    Applied Intelligence, 2023, 53 : 7512 - 7527
  • [3] HCiT: Deepfake Video Detection Using a Hybrid Model of CNN features and Vision Transformer
    Kaddar, Bachir
    Fezza, Sid Ahmed
    Hamidouche, Wassim
    Akhtar, Zahid
    Hadid, Abdenour
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [4] Efficient deepfake detection using shallow vision transformer
    Usmani, Shaheen
    Kumar, Sunil
    Sadhya, Debanjan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 12339 - 12362
  • [5] Efficient deepfake detection using shallow vision transformer
    Shaheen Usmani
    Sunil Kumar
    Debanjan Sadhya
    Multimedia Tools and Applications, 2024, 83 : 12339 - 12362
  • [6] Deepfake Image Detection using Vision Transformer Models
    Ghita, Bogdan
    Kuzminykh, Ievgeniia
    Usama, Abubakar
    Bakhshi, Taimur
    Marchang, Jims
    2024 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING, BLACKSEACOM 2024, 2024, : 332 - 335
  • [7] Deepfake detection using convolutional vision transformers and convolutional neural networks
    Soudy, Ahmed Hatem
    Sayed, Omnia
    Tag-Elser, Hala
    Ragab, Rewaa
    Mohsen, Sohaila
    Mostafa, Tarek
    Abohany, Amr A.
    Slim, Salwa O.
    Neural Computing and Applications, 2024, 36 (31) : 19759 - 19775
  • [8] Deep Convolutional Pooling Transformer for Deepfake Detection
    Wang, Tianyi
    Cheng, Harry
    Chow, Kam Pui
    Nie, Liqiang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (06)
  • [9] Improving Video Vision Transformer for Deepfake Video Detection Using Facial Landmark, Depthwise Separable Convolution and Self Attention
    Ramadhani, Kurniawan Nur
    Munir, Rinaldi
    Utama, Nugraha Priya
    IEEE ACCESS, 2024, 12 : 8932 - 8939
  • [10] Deepfake Video Detection with Spatiotemporal Dropout Transformer
    Zhang, Daichi
    Lin, Fanzhao
    Hua, Yingying
    Wang, Pengju
    Zeng, Dan
    Ge, Shiming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5833 - 5841