Predicting hydroformylation regioselectivity from literature data via machine learning

被引:0
|
作者
Chen, Shuai [1 ]
Pollice, Robert [1 ]
机构
[1] Stratingh Inst Chem, Groningen, Netherlands
来源
CHEM CATALYSIS | 2024年 / 4卷 / 09期
关键词
D O I
10.1016/j.checat.2024.101111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this issue of Chem Catalysis, Mao et al. develop machine learning models that predict terminal alkene regioselectivity in catalytic hydroformylation, showing that high temperature, low pressure, and low metal concentration favor linear products. These models enable high-throughput screening, potentially advancing innovations in this industrial process.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Personalized machine learning models of terminal olefin hydroformylation for regioselectivity prediction
    Wang, Hao
    Chen, Yuzhuo
    Yu, Hang
    Qi, Menghui
    Xia, De
    Qin, Minkai
    Lv, XuCheng
    Lu, Bing
    Gao, Ruiliang
    Wang, Yong
    Mao, Shanjun
    CHEM CATALYSIS, 2024, 4 (09):
  • [2] Predicting Interference Graphs from Data: A Machine Learning Approach
    Gowgi, Prayag
    Sadasivan, Jishnu
    Teslenko, Maxim
    2024 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS, SPCOM 2024, 2024,
  • [3] RegioML: predicting the regioselectivity of electrophilic aromatic substitution reactions using machine learning
    Ree, Nicolai
    Goeller, Andreas H.
    Jensen, Jan H.
    DIGITAL DISCOVERY, 2022, 1 (02): : 108 - 114
  • [4] Enhancing regioselectivity via tuning the microenvironment in heterogeneous hydroformylation of olefins
    Zhang, Jing
    Sun, Peng
    Gao, Guang
    Wang, Jia
    Zhao, Zelun
    Muhammad, Yaseen
    Li, Fuwei
    JOURNAL OF CATALYSIS, 2020, 387 : 196 - 206
  • [5] Predicting material microstructure evolution via data-driven machine learning
    Kautz, Elizabeth J.
    PATTERNS, 2021, 2 (07):
  • [6] Predicting data science performance from log data: using machine learning
    Doleck, Tenzin
    Agand, Pedram
    Pirrotta, Dylan
    EDUCATION AND INFORMATION TECHNOLOGIES, 2025,
  • [7] Predicting MXene Properties via Machine Learning
    Vertina, Eric W.
    Deskins, N. Aaron
    Sutherland, Emily
    Mangoubi, Oren
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1573 - 1578
  • [8] Predicting the Shape of Corneas from Clinical Data with Machine Learning Models
    Bouazizi, Hala
    Brunette, Isabelle
    Meunier, Jean
    IRBM, 2024, 45 (05)
  • [9] Predicting Regioselectivity in Radical C-H Functionalization of Heterocycles through Machine Learning
    Li, Xin
    Zhang, Shuo-Qing
    Xu, Li-Cheng
    Hong, Xin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (32) : 13253 - 13259
  • [10] PREDICTING CIRRHOSIS RELATED READMISSION VIA MACHINE LEARNING USING TIME SERIES DATA
    Penrice, Daniel
    Patel, Shrinath
    Schmidt, Kathryn
    Hara, Kamalpreet S.
    Chara, Beatriz Sordi
    Rattan, Puru
    Ngufor, Che
    Simonetto, Douglas
    GASTROENTEROLOGY, 2024, 166 (05) : S1574 - S1574