Evolution Inversion: Co-Evolution of Model and Data for Seismic Reservoir Parameters Inversion

被引:0
|
作者
Song, Cao [1 ]
Lu, Minghui [2 ]
Lu, Wenkai [1 ]
Geng, Weiheng [1 ]
Li, Yinshuo [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRist, Dept Automat, Beijing 100084, Peoples R China
[2] China Natl Petr Corp CNPC, Res Inst Petr Explorat & Dev RIPED, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Mathematical models; Reservoirs; Artificial neural networks; Feature extraction; Convolution; Noise reduction; Deep learning (DL); elastic parameters; evolution; physical parameters; seismic inversion; CONVOLUTIONAL NEURAL-NETWORK; SYSTEM;
D O I
10.1109/TGRS.2024.3440480
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic inversion is a critical research area in seismic data interpretation. Given the powerful feature extraction and representation capabilities of deep neural network (DNN), it has been widely adopted in the seismic reservoir parameters inversion. However, the majority of DNN-based inversion methods use 1-D models due to the scarcity of well-logging labels, which are only 1-D time series. The performance of higher-dimensional DNN-based inversion methods depends on the quality of the initial inversion results, leading to an interdependence between the model and data in the time and space dimensions. Here, we propose a model and data co-evolution method for seismic reservoir parameters inversion. It employs a 1-D DNN model-based closed-loop model to generate initial reservoir inversion results. Then, the evolutionary 2-D model learns spatial structural features constrained by the initial reservoir inversion results to improve the spatial continuity. We tested the proposed method on synthetic seismic data with multiple fault structures, achieving the lowest inversion error and highest inversion accuracy. It also exhibits the highest accuracy in real seismic data with the structural features of underground rivers being more pronounced.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Direct inversion for reservoir parameters from prestack seismic data
    Zhang, Fanchang
    Yang, Jingyang
    Li, Chuanhui
    Li, Dong
    Gao, Yang
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2020, 17 (06) : 993 - 1004
  • [2] Partial recombination for the co-evolution of model parameters
    Parker, GB
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 2216 - 2223
  • [3] Geostatistical inversion: seismic data to reservoir properties
    Lamy, P.
    Swaby, P.A.
    Rowbotham, P.S.
    Dubrule, O.
    Haas, A.
    JPT, Journal of Petroleum Technology, 1999, 51 (06): : 38 - 39
  • [4] Inversion technique for reservoir parameters by combining logs with seismic data and its application
    Sima, L.
    Zheng, S.
    Wu, S.
    Cejing Jishu/Well Logging Technology, 2001, 25 (01): : 12 - 15
  • [5] Geostatistical inversion; Seismic data po reservoir properties
    Lamy, P
    Swaby, PA
    Rowbotham, PS
    Dubrule, O
    Haas, A
    JOURNAL OF PETROLEUM TECHNOLOGY, 1999, 51 (06): : 38 - 39
  • [6] Reservoir parameter inversion using seismic and log data
    Shiyou Diqiu Wuli Kantan, 1 (38-43):
  • [7] Nonlinear inversion for estimating reservoir parameters from time-lapse seismic data
    Dadashpour, Mohsen
    Landro, Martin
    Kleppe, Jon
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2008, 5 (01) : 54 - 66
  • [8] Seismic-data inversion improves the complex-reservoir static model
    不详
    JOURNAL OF PETROLEUM TECHNOLOGY, 2001, 53 (08): : 48 - +
  • [9] Seismic-data inversion improves the complex-reservoir static model
    2002, Society of Petroleum Engineers (SPE) (53): : 48 - 51
  • [10] Co-evolution of Rewards and Meta-parameters in Embodied Evolution
    Elfwing, Stefan
    Uchibe, Eiji
    Doya, Kenji
    CREATING BRAIN-LIKE INTELLIGENCE: FROM BASIC PRINCIPLES TO COMPLEX INTELLIGENT SYSTEMS, 2009, 5436 : 278 - 302