ASYMPTOTIC BIAS OF INEXACT MARKOV CHAIN MONTE CARLO METHODS IN HIGH DIMENSION

被引:2
|
作者
Durmus, Alain [1 ]
Eberle, Andreas [2 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, Ctr Math Appl CMAP, CNRS, Palaiseau, France
[2] Univ Bonn, Inst Angew Math, Bonn, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2024年 / 34卷 / 04期
关键词
Coupling; convergence to equilibrium; Markov chain Monte Carlo; Hamiltonian Monte Carlo; hybrid Monte Carlo; CONTRACTION RATES; LANGEVIN; CONVERGENCE; APPROXIMATION; GUARANTEES; ALGORITHMS; COUPLINGS; EQUATIONS; ERROR;
D O I
10.1214/23-AAP2034
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inexact Markov chain Monte Carlo methods rely on Markov chains that do not exactly preserve the target distribution. Examples include the unadjusted Langevin algorithm (ULA) and unadjusted Hamiltonian Monte Carlo (uHMC). This paper establishes bounds on Wasserstein distances between the invariant probability measures of inexact MCMC methods and their target distributions with a focus on understanding the precise dependence of this asymptotic bias on both dimension and discretization step size. Assuming Wasserstein bounds on the convergence to equilibrium of either the exact or the approximate dynamics, we show that for both ULA and uHMC, the asymptotic bias depends on key quantities related to the target distribution or the stationary probability measure of the scheme. As a corollary, we conclude that for models with a limited amount of interactions such as mean-field models, finite range graphical models, and perturbations thereof, the asymptotic bias has a similar dependence on the step size and the dimension as for product measures.
引用
收藏
页码:3435 / 3468
页数:34
相关论文
共 50 条
  • [1] COMPARISON OF ASYMPTOTIC VARIANCES OF INHOMOGENEOUS MARKOV CHAINS WITH APPLICATION TO MARKOV CHAIN MONTE CARLO METHODS
    Maire, Florian
    Douc, Randal
    Olsson, Jimmy
    ANNALS OF STATISTICS, 2014, 42 (04): : 1483 - 1510
  • [2] An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension
    Marnissi, Yosra
    Chouzenoux, Emilie
    Benazza-Benyahia, Amel
    Pesquet, Jean-Christophe
    ENTROPY, 2018, 20 (02)
  • [3] An introduction to Markov chain Monte Carlo methods
    Besag, J
    MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [4] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454
  • [5] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [6] The Evolution of Markov Chain Monte Carlo Methods
    Richey, Matthew
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (05): : 383 - 413
  • [7] Analysis of high frequency data by Markov chain Monte Carlo methods
    Chib, S
    MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 552 - 552
  • [8] Markov Chain Monte Carlo Detection Methods for High SNR Regimes
    Akoum, Salam
    Pen, Ronghui
    Chen, Rong-Rong
    Farhang-Boroujeny, Behrouz
    2009 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-8, 2009, : 3026 - 3030
  • [9] Markov Chain Monte Carlo methods1. Simple Monte Carlo
    K B Athreya
    Mohan Delampady
    T Krishnan
    Resonance, 2003, 8 (4) : 17 - 26
  • [10] Dimension-independent Markov chain Monte Carlo on the sphere
    Lie, Han Cheng
    Rudolf, Daniel
    Sprungk, Bjoern
    Sullivan, T. J.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) : 1818 - 1858