Reinforcement learning intermittent optimal formation control for multi-agent systems with disturbances

被引:0
|
作者
Liu, Erliang [1 ]
Miao, Guoying [1 ]
Hu, Jingyu [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
formation control; multi-agent systems; disturbance observer; intermittent event-triggered; ADP; NONLINEAR-SYSTEMS; CONSENSUS; SYNCHRONIZATION; ALGORITHM; TRACKING; DESIGN;
D O I
10.1088/1361-6501/ad7a18
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates disturbance-resistant intermittent event-triggered optimal formation control problems of second-order multi-agent systems by using the reinforcement learning method, which takes into account the influence of network damage including denial-of-service (DoS) and deception attacks, stochastic noises, and unknown external disturbances. Firstly, we propose a novel disturbance observer based on adaptive control to estimate unknown external disturbances under an event-triggered mechanism. Secondly, by use of estimation of disturbances, an innovative intermittent event-triggered optimal formation algorithm is given. By applying theories such as Lyapunov stability and stochastic stability, sufficient conditions are derived to guarantee that all agents achieve the desired formation in mean square sense. Additionally, in the model-free case, the optimal controller is solved using the least squares method, which is computationally less complex than some existing approaches. Finally, the theoretical results are effectively validated through simulation examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Nearly Optimal Multi-agent Formation Control with Reinforcement Learning
    Peng, Jiangwen
    Mu, Chaoxu
    Wang, Ke
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5315 - 5320
  • [2] Optimal robust formation control for heterogeneous multi-agent systems based on reinforcement learning
    Yan, Bing
    Shi, Peng
    Lim, Cheng-Chew
    Shi, Zhiyuan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (05) : 2683 - 2704
  • [3] Heterogeneous optimal formation control of nonlinear multi-agent systems with unknown dynamics by safe reinforcement learning
    Golmisheh, Fatemeh Mahdavi
    Shamaghdari, Saeed
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 460
  • [4] Robust Optimal Formation Control of Heterogeneous Multi-Agent System via Reinforcement Learning
    Lin, Wei
    Zhao, Wanbing
    Liu, Hao
    IEEE ACCESS, 2020, 8 (08): : 218424 - 218432
  • [5] Optimal control in microgrid using multi-agent reinforcement learning
    Li, Fu-Dong
    Wu, Min
    He, Yong
    Chen, Xin
    ISA TRANSACTIONS, 2012, 51 (06) : 743 - 751
  • [6] Resilient adaptive optimal control of distributed multi-agent systems using reinforcement learning
    Moghadam, Rohollah
    Modares, Hamidreza
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (16): : 2165 - 2174
  • [7] Optimal Control for Multi-agent Systems Using Off-Policy Reinforcement Learning
    Wang, Hao
    Chen, Zhiru
    Wang, Jun
    Lu, Lijun
    Li, Mingzhe
    2022 4TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS, ICCR, 2022, : 135 - 140
  • [8] Distributed optimal control of nonlinear multi-agent systems based on integral reinforcement learning
    Xu, Ying
    Li, Kewen
    Li, Yongming
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (06): : 2596 - 2612
  • [9] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [10] Formation Control using Simplified Reinforcement Learning for Multi-agent systems with State Delay
    Shao, Wentai
    Chen, Yutao
    Huang, Jie
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 2269 - 2274