PredictOptiCloud: A hybrid framework for predictive optimization in hybrid workload cloud task scheduling

被引:2
|
作者
Sugan, J. [1 ]
Sajan, Isaac R. [1 ]
机构
[1] Ponjesly Coll Engn, Dept Elect & Commun Engn, Nagercoil, Tamil Nadu, India
关键词
Task scheduling; Hybrid workload; Cloud computing; e; -commerce; Bi-LSTM; Spider Wolf Optimization; ALGORITHM;
D O I
10.1016/j.simpat.2024.102946
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the realm of e-commerce, the growing complexity of dynamic workloads and resource management poses a substantial challenge for platforms aiming to optimize user experiences and operational efficiency. To address this issue, the PredictOptiCloud framework is introduced, offering a solution that combines sophisticated methodologies with comprehensive performance analysis. The framework encompasses a domain-specific approach that extracts and processes historical workload data, utilizing Domain-specific Hierarchical Attention Bi LSTM networks. This enables PredictOptiCloud to effectively predict and manage both stable and dynamic workloads. Furthermore, it employs the Spider Wolf Optimization (SWO) for load balancing and offloading decisions, optimizing resource allocation and enhancing user experiences. The performance analysis of PredictOptiCloud involves a multifaceted evaluation, with key metrics including response time, throughput, resource utilization rate, cost-efficiency, conversion rate, rate of successful task offloading, precision, accuracy, task volume, and churn rate. By meticulously assessing these metrics, PredictOptiCloud demonstrates its prowess in not only predicting and managing workloads but also in optimizing user satisfaction, operational efficiency, and costeffectiveness, ultimately positioning itself as an invaluable asset for e-commerce platforms striving for excellence in an ever-evolving landscape.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Workload prioritization and optimal task scheduling in cloud: introduction to hybrid optimization algorithm
    Pachipala, Yellamma
    Dasari, Durga Bhavani
    Rao, Veeranki Venkata Rama Maheswara
    Bethapudi, Prakash
    Srinivasarao, Tumma
    WIRELESS NETWORKS, 2025, 31 (01) : 945 - 964
  • [2] Task scheduling in cloud computing using hybrid optimization algorithm
    Khan, Mohd Sha Alam
    Santhosh, R.
    SOFT COMPUTING, 2022, 26 (23) : 13069 - 13079
  • [3] Task scheduling in cloud computing using hybrid optimization algorithm
    Mohd Sha Alam Khan
    R. Santhosh
    Soft Computing, 2022, 26 : 13069 - 13079
  • [4] Hybrid glowworm swarm optimization for task scheduling in the cloud environment
    Zhou, Jing
    Dong, Shoubin
    ENGINEERING OPTIMIZATION, 2018, 50 (06) : 949 - 964
  • [5] Hybrid swarm optimization algorithm based on task scheduling in a cloud environment
    Eldesokey, Heba M.
    Abd El-atty, Saied M.
    El-Shafai, Walid
    Amoon, Mohammed
    Abd El-Samie, Fathi E.
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (13)
  • [6] GAP: Hybrid task scheduling algorithm for cloud
    Dewangan B.K.
    Jain A.
    Choudhury T.
    Revue d'Intelligence Artificielle, 2020, 34 (04) : 479 - 485
  • [7] Hybrid optimization algorithm for task scheduling and virtual machine allocation in cloud computing
    Sreenivasulu, G.
    Paramasivam, Ilango
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (02) : 1015 - 1022
  • [8] Hybrid optimization algorithm for task scheduling and virtual machine allocation in cloud computing
    G. Sreenivasulu
    Ilango Paramasivam
    Evolutionary Intelligence, 2021, 14 : 1015 - 1022
  • [9] HPCWMF: A Hybrid Predictive Cloud Workload Management Framework Using Improved LSTM Neural Network
    Kumar, K. Dinesh
    Umamaheswari, E.
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2020, 20 (04) : 55 - 73
  • [10] Hybrid Optimization Model for Secure Task Scheduling in Cloud: Combining Seagull and Black Widow Optimization
    Verma, Garima
    CYBERNETICS AND SYSTEMS, 2024, 55 (08) : 2489 - 2511